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Philosophy

We must learn to love life . . .
. . . without ever trusting it[3].

⇒ “We must learn to love life data . . . without ever trusting it.”

The broad question: how to turn this into quantifiable, practical advice?
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Outline

• “Adversarial” ambition is ambiguous (and alliterative).

• Machine learning has default expectations.

• These are deceptively subverted by label tampering attacks.

• There are a variety of possible label tampering attacks.

• “Quantified paranoia” might be one way to detect them.
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“Adversarial” Ambition is Ambiguous

The word “adversarial” has many distinct connotations.

An incomplete list of possible adversarial goals and models:

A) Undermine the sensor

B) Model stealing

C) Generative adversarial networks

D) Test sample attacks on deep learning image analysis

E) An algorithmically informed, empowered adversary
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A) Undermine a Sensor

Classic adversarial methods

Jamming

Hiding

Deception[4]
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B) Model Stealing

An adversary who copies or reverse engineers a machine learning model,

likely in order to study it and build custom attacks against it[10, 9].

Credit: Dooder, Freepik.com
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C) Generative Adversarial Networks

More like resistance training[6] than malevolent adversarial action.

From KDDNuggets, January 2017
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D) Test Sample Attacks on DL Image Analysis

Many recent examples:

Robust Physical-World Attacks on Machine Learning Models

Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples

Fooling Neural Networks in the Physical World with 3D Adversarial Objects ...

Synthesizing Robust Adversarial Examples, Anish Athalye, Logan Engstrom, An-

drew Ilyas, Kevin Kwok

Kegelmeyer (wpk@sandia.gov), C3E Fall 2018, September 18, 2018 Page 9 of 36



E) An Algorithmically Informed Adversary

A worst case scenario: an adversary that knows every detail of our machine

learning method, and has some ability to alter the data.

We aim to quantify just how badly we are hosed.
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E) An Algorithmically Informed Adversary

A worst case scenario: an adversary that knows every detail of our machine

learning method, and has some ability to alter the data . . .

Recent papers to know if you use deep learning with pre-trained networks:

• BadNets: Identifying Vulnerabilities

in the Machine Learning Model

Supply Chain, Tianyu Gu, Brendan

Dolan-Gavitt, Siddharth Garg

• Machine Learning Models that

Remember Too Much, Congzheng

Song, Thomas Ristenpart, Vitaly

Shmatikov
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Outline

• “Adversarial” ambition is ambiguous (and alliterative).

• Machine learning has default expectations.

• These are deceptively subverted by label tampering attacks.

• There are a variety of possible label tampering attacks.

• “Quantified paranoia” might be one way to detect them.
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Machine Learning In One Slide

id Truth a1 a2 a3 . . . aK

q0 I 8 612 0.57 . . . 0.70

q1 R 12 1003 0.97 . . . 0.12

q2 R 99 2 0.33 . . . 0.03

q3 I 3 27 0.12 . . . 0.13

q4 R 16 183 0.08 . . . 0.58

q5 I 17 665 0.36 . . . 0.64

q6 I 44 1212 0.29 . . . 0.42

q7 I 42 24 0.33 . . . 0.88

q8 R 78 42 0.44 . . . 0.52

q9 I 32 111 0.83 . . . 0.71

(Of course, no real training set would have just ten samples.)
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Ensemble Machine Learning In One Slide

Start with “ground truth” training data:

each training sample has attributes and trusted labels.

Sage sees all the data. Experts see diverse subsets. Each bozo sees a tiny fraction.

The experts beat the sage[1]. The bozos beat the experts[2].
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Outline

• “Adversarial” ambition is ambiguous (and alliterative).

• Machine learning has default expectations.

• These are deceptively subverted by label tampering attacks.

• There are a variety of possible label tampering attacks.

• “Quantified paranoia” might be one way to detect them.
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Review: Performance Assessment Expectations

Typically, one expects:

• cross-validation on the training data to be an optimistic estimate . . .

• . . . of ensemble performance on test data, which in turn is better than

• . . .non-ensemble performance on test data.

Various Algorithm Parameters Various Data Decimations
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Outline

• “Adversarial” ambition is ambiguous (and alliterative).

• Machine learning has default expectations.

• These are deceptively subverted by label tampering

attacks.

• There are a variety of possible label tampering attacks.

• “Quantified paranoia” might be one way to detect them.
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Label Tampering; an “Algorithm-Aware” Attack

No Label Tampering 10% Random Label Tampering
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Random Tampering

Mindless, random flipping of labels is eventually effective enough.

Pass/Fail Product Inspection
cross-validation on training, ensemble performance on test, non-ensemble performance on test.
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How We Specify A Label Tampering Attack

• An “attack specification” is:

– a specific sorting of all the training samples, in the order in which

we’ll tamper with the labels,

– plus, for each sample, a specification of the tampered value we’ll

change it to.

• An “attack at budget N” is a set of training data where the truth

labels of the first N samples in an attack have been altered according

to a particular attack specification.

• An “attack heuristic” is a method for generating an attack specification

from a set of training samples.
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Original, Untampered Training Data

id Truth a1 a2 a3 . . . aK

q0 I 8 612 0.57 . . . 0.70

q1 R 12 1003 0.97 . . . 0.12

q2 R 99 2 0.33 . . . 0.03

q3 I 3 27 0.12 . . . 0.13

q4 R 16 183 0.08 . . . 0.58

q5 I 17 665 0.36 . . . 0.64

q6 I 44 1212 0.29 . . . 0.42

q7 I 42 24 0.33 . . . 0.88

q8 R 78 42 0.44 . . . 0.52

q9 I 32 111 0.83 . . . 0.71

(Of course, no real training set would have just ten samples.)

Kegelmeyer (wpk@sandia.gov), C3E Fall 2018, September 18, 2018 Page 21 of 36



An Attack Specification

id Truth Target a1 a2 a3 . . . aK

q2 R I 99 2 0.33 . . . 0.03

q9 I R 32 111 0.83 . . . 0.71

q5 I R 17 665 0.36 . . . 0.64

q0 I R 8 612 0.57 . . . 0.70

q1 R I 12 1003 0.97 . . . 0.12

q6 I R 44 1212 0.29 . . . 0.42

q3 I R 3 27 0.12 . . . 0.13

q7 I R 42 24 0.33 . . . 0.88

q4 R I 16 183 0.08 . . . 0.58

q8 R I 78 42 0.44 . . . 0.52
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An Attack at Budget=4

id Truth Target Tampered a1 a2 a3 . . . aK

q2 R I I 99 2 0.33 . . . 0.03

q9 I R R 32 111 0.83 . . . 0.71

q5 I R R 17 665 0.36 . . . 0.64

q0 I R R 8 612 0.57 . . . 0.70

q1 R I R 12 1003 0.97 . . . 0.12

q6 I R I 44 1212 0.29 . . . 0.42

q3 I R I 3 27 0.12 . . . 0.13

q7 I R I 42 24 0.33 . . . 0.88

q4 R I R 16 183 0.08 . . . 0.58

q8 R I R 78 42 0.44 . . . 0.52

Now build an ML model with the “Tampered” column as the truth data.
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Outline

• “Adversarial” ambition is ambiguous (and alliterative).

• Machine learning has default expectations.

• These are deceptively subverted by label tampering attacks.

• There are a variety of possible label tampering

attacks.

• “Quantified paranoia” might be one way to detect them.
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The “Brute Clustering” Heuristic

• The heuristic:

– Do an unsupervised clustering of all training samples.

– Pick an unattacked cluster at random.

– Randomly order only the points in that cluster.

– Repeat until all clusters have been attacked.
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The “Brute Clustering” Heuristic

A smarter attack would try to suppress the cross-validation “dip” signature.

Brute Clustering Random
cross-validation on training, ensemble performance on test, non-ensemble performance on test.
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The “Conditional Prediction Ordinate” Attack

• The heuristic:

– Fit a logistic regression model, generate feature weights βj .

– Use βj and Monte Carlo simulation to compute CPOi[5] for

each training sample i.

– CPOi is a measure of the sample i’s influence on the model.

– Sort by influence, attack most influential samples first.
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Attack Statistically Significant Samples via CPO

Even smarter attacks drive down accuracy, with less signaling.

Absolute CPO Random
cross-validation on training, ensemble performance on test, non-ensemble performance on test.
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We Invented Many Such Attacks
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We Invented Many Such Attacks

Random: Attack samples in a random order.

Class Random: Pick a class randomly, change every sample of that class to some other

random class. Repeat until all classes are attacked.

Greedy Pessimal: Iterative greedy search, attacking the training sample that reduces test

performance the most at each iteration.

Brute Clustering: Cluster the samples, pick an unattacked cluster at random, attack its

samples in a random order. Repeat.

Subtle Clustering: Cluster the samples, pick an unattacked cluster at random, attack its

samples from the outside in. Repeat. (Outside in to promote stealth.)

Heterogeneous Clustering: Cluster the samples. Use a one-way chi-squared test to sort the

clusters from most to least heterogeneous. Attack clusters in that order, in each case

attacking from the inside out. (Inside out to sow confusion as quickly as possible.)

Understated Clustering: Cluster the samples. Sort the clusters in descending order by

their percentage population of a target class Lc. Attack clusters in that order, in each

case attacking from the outside in. (Sort by class to specifically try to confuse detection

of a target class.)

Conditional Predictive Ordinates: Compute the conditional predictive ordinate (CPO) of

every sample, as that’s an inverse measure of the influence of that sample. Attack in order

of increasing absolute value of CPO.
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Outline

• “Adversarial” ambition is ambiguous (and alliterative).

• Machine learning has default expectations.

• These are deceptively subverted by label tampering attacks.

• There are a variety of possible label tampering attacks.

• “Quantified paranoia” might be one way to detect them.
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Not Discussing EOM Remediation Today

EOM: Ensembles of Outlier Measures

No Label Tampering 15% Label Tampering

One example outlier measure: K nearest neighbor agreement (nna)

• p1 (pre-attack): 5-nna is 1.0

• p2 (pre-attack): 5-nna is 1.0

• p1 (tampered): 5-nna is 0.2

• p2 (untampered): 5-nna is 0.8
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Quantified Paranoia Via Pseudo-Bayes Factors

• Fit a model Ma on untampered data A.

• Fit a model Mb on possibly tampered data B.

• Don’t ask: “are the models similar?”

• Do ask: “are the model fits on B similar”.
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Pseudo-Bayes Factors[8]

• CPOi are goodness-of-fit measures; they track outliers.

• Intuition: If B is untampered data drawn from the same distribution as A,

then Models A and B should both individually have roughly the same

goodness-of-fit for B.

• PBF is the ratio of those model fits:

– If the fits of Models A and B on data B are indeed nearly identical, the

PBF will be very close to 1.

– If B has been tampered with, if it is different than A, then Model B will

fit B better than Model A, Model B will have fewer outliers, and the ratio

will be higher than 1.
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An Example Empirical Experiment

Budget Random CPO SC

0 0.19

1 3.55 4.17 2.17

2 5.11 8.57 4.77

3 6.96 12.21 6.07

4 11.44 15.68 5.99

5 15.62 18.03 8.06

6 17.43 19.80 10.13

7 20.67 20.77 11.72

8 23.00 22.60 13.70

9 24.64 24.12 13.64

10 24.26 26.82 13.33

11 24.93 28.10 14.96

12 26.65 29.70 16.57

log(PBF) comparison of three attacks

Date 10/1 10/7 11/1 11/7 12/1 12/7

log(PBF) 0.00 0.23 -0.05 0.11 0.55 -0.11

PBF over time with unattacked, naturally evolving data

Interpretation log(PBF)

Very strong support for tampering in A <-5

Strong support for tampering in A -5 to -3

Positive support for tampering in A -3 to -1

Weak support for tampering in A -1 to 0

No support for tampering in A 0

Weak support for tampering in B 0 to 1

Positive support for tampering in B 1 to 3

Strong support for tampering in B 3 to 5

Very strong support for tampering in B >5

Interpretation of log(PBF)[8]

• Untampered model from set-aside data.

• Budget “0” is the “untampered data” case.

• Caveat: only 260 data points, so three tampered data points is 1%.
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Final Summary

• “Adversarial” ambition is ambiguous (and alliterative).

• Machine learning has default expectations.

• These are deceptively subverted by label tampering attacks.

• There are a variety of possible label tampering attacks.

• “Quantified paranoia” might be one way to detect them.
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End Notes

Collaborators: Sandians: Ali Pinar, Dave Zage, Jon Crussell, Katie Rodhouse, Dave Robinson,
Warren Davis, Justin (JD) Doak, Jeremy Wendt, Curtis Johnson. Others: Rich Colbaugh, Kristin
Glass, Brian Jones, Yevgeniy Vorobeychik, Jeff Shelburg.
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Supplemental Slides
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Conditional Prediction Ordinate Math

• Logistic regression:

– Assume P (y = 1|β,xi) = ψ
(∑

j
βjxi,j

)
.

– Use a logistic function for ψ: ψ(z) = exp(z)
1+exp(z)

.

• Conditional Prediction Ordinate

– CPOi is the inverse of the posterior mean of the inverse likelihood of yi:

CPOi =
f(y)

f(y¬i)
=

(
1

N

N∑
j=1

1

f(yi|βj)

)−1

– CPOi is posterior probability of yi when the model is fitted to all data

except yi.

– If |CPOi| is high, yi is not surprising, is as expected.

– If |CPOi| is low, yi is surprising, is an influential sample, is not well

modeled by f(y¬i), and so would have changed the f(y) model if present.
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Pseudo-Bayes Factors[8]

• CPOi are goodness-of-fit measures; they track outliers.

• Intuition: If B is untampered data drawn from the same distribution as A,

then Models A and B should both individually have roughly the same

goodness-of-fit for B. We can check this by examining the CPO values

generated by Models A and B on B.

PBFab =
f(B|Ma)

f(B|Mb)
=

∫
f(B|βa,Ma)f(βa|Ma)dβa∫
f(B|βb,Mb)f(βb|Mb)dβb

=

∏
N
CPOai|Ma∏

N
CPObi|Mb

• If the fits of Models A and B on data B are indeed nearly identical, the PBF

will be very close to 1.

• If B has been tampered with, if it is different than A, then Model B will fit B

better than Model A, Model B will have fewer outliers, and the ratio will be

higher than 1.
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Counter Adversarial Data Analytics (CADA)

IF (white AND fuzzy) Then <Harmless>

Kegelmeyer (wpk@sandia.gov), C3E Fall 2018, September 18, 2018 Page 41 of 36



Counter Adversarial Data Analytics (CADA)

IF (white AND fuzzy) Then <Harmless>

Sandia makes critical use of data analytics,

which our adversaries therefore seek to sap,

even suborn.

Through understanding our methods, they

seek to produce data which is evolving,

incomplete, deceptive, and otherwise

custom-designed to defeat our analysis.

We cannot prevent this: we frequently must

depend on data over which our adversaries

have extensive influence.

We will thus develop and assess novel data

analysis methods to counter that

adversarial influence.

• Goals:

– Discover generalizable, quantifiable counter-adversarial principles.

– Specifically: investigate a) robust, b) predictive, and c) dynamic defenses.

– Convert them to relevant, realistic methods with practical implementations.
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Philosophy

“We must learn to love life without ever trusting it.” (G.K. Chesterson)

⇒ “We must learn to love life data without ever trusting it.”

CADA is working to turn this into quantified, practical advice.

• Data Sciences Research Challenge late start LDRD; started April 2013

• 1.25M over 1.5 years, with staff across two sites and five divisions.

• Coordinates with Sandia LDRDs (HostWatch, Alert Triage, MaLAdE)

and program work (Mountain Creek).

• Nascent external work on the effects of data tampering[?, ?].
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Is There Any Way to Mitigate the Damage?

EOM: Ensembles of Outlier Measures

No Label Tampering 15% Label Tampering

(Circles indicate label-tampered points.)

Outliers (weakly) signal tampering.

But no one outlier measure is perfect. So . . .

use a variety of outlier measures, at a variety of parameter settings,

and interpret them with ensembles of decision trees.
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Is There Any Way to Mitigate the Damage?

EOM: Ensembles of Outlier Measures

No Label Tampering 15% Label Tampering

One example outlier measure: K nearest neighbor agreement (nna)

• p1 (pre-attack): 5-nna is 1.0

• p2 (pre-attack): 5-nna is 1.0

• p1 (tampered): 5-nna is 0.2

• p2 (untampered): 5-nna is 0.8
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Current Outlier Measures

No Label Tampering 15% Label Tampering

• Label Spreading

• KNN agreement

• Local Outlier Factor

• Boosting weights

• Confidence mismatch

• Local Correlation Integral (LOCI)

• DBSCAN
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Detect and Repair Tampering

“Flipped”: The tampered data.

“Repair”: wherever tampered labels are detected, correct the label.
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A Mosaic of Tamper Remediations

Assume Random, Actually

Random
Assume Random, Actually HC

Assume HC, Actually Random Assume HC, Actually HC
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Summary
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Summary
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EOM Applied to a Very Different Analytic

Clustering as applied to Android app plagiarism detection[?].

Red X: indicates plagiarized apps Black P: fake apps

Red X: true plagiarisms and false alarms
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EOM is Gratifyingly General

• Applied to clustering, not supervised machine learning, with . . .

• ... an entirely different set of outlier features.

• Yet still: poisoned data can be found and removed via EOM.
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Summary

Machine learning has default expectations.

These are subverted, even deceptive in the face of label tampering attacks.

“Ensembles of Outlier Methods” can help detect and mitigate those attacks,

And in a surprisingly general way.

(Plus, a fledgling example of a graph analysis attack.)
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