Automatic reverse engineering for formal verification

> Magnus O. Myreen University of Cambridge, UK

Presented at HCSS 2009

Trust.

Do you trust your programs? ... written in C, C++, Java, Haskell

High assurance requires proof, but what is assumed about:

- \blacktriangleright the source language?
- \blacktriangleright the compiler?
- \triangleright the execution environment of the target languages?

Most verification proof are of source code, but source code is not what runs on real hardware.

Trust the machine code

For hardware, programs are machine code:

34 F8 45 E5 34 82 03 00 ...

Real guarantees for actual executable code requires proving properties of machine code.

This talk:

- Part 1: verification of existing machine code (via decompilation)
- Part 2: construction of correct machine code (via compilation)
- Part 3: case study: verified LISP interpreter

Challenges:

- \blacktriangleright machine code operates at a low level of abstraction
- \blacktriangleright machine languages differ from each other

Challenges:

- \triangleright machine code operates at a low level of abstraction
- \triangleright machine languages differ from each other
- \triangleright detailed models of such are large and hard to learn

Challenges:

- \triangleright machine code operates at a low level of abstraction
- \triangleright machine languages differ from each other
- \triangleright detailed models of such are large and hard to learn

machine code

code

correctness statement $\{P\}$ code $\{Q\}$

Challenges:

- \triangleright machine code operates at a low level of abstraction
- \triangleright machine languages differ from each other
- \triangleright detailed models of such are large and hard to learn

correctness statement $\{P\}$ code $\{Q\}$

Challenges:

- \triangleright machine code operates at a low level of abstraction
- \triangleright machine languages differ from each other
- \triangleright detailed models of such are large and hard to learn

Contribution: a method/tool which

- \triangleright exposes as little as possible of the big models to the user;
- \triangleright makes non-automatic proofs independent of the models

Decompilation

Example: Given some ARM machine code,

- 0: E3A00000
- 4: E3510000
- 8: 12800001
- 12: 15911000
- 16: 1AFFFFFB

Decompilation

Example: Given some ARM machine code,

Decompilation

Example: Given some ARM machine code,

the decompiler extracts a readable function:

$$
f(r_0, r_1, m) = \text{let } r_0 = 0 \text{ in } g(r_0, r_1, m)
$$

$$
g(r_0, r_1, m) = \text{if } r_1 = 0 \text{ then } (r_0, r_1, m) \text{ else}
$$

let $r_0 = r_0 + 1 \text{ in}$
let $r_1 = m(r_1) \text{ in}$
 $g(r_0, r_1, m)$

Decompilation, correct?

Decompiler automatically proves a certificate theorem which states that f describes the effect of the ARM code, informally:

for any initially value (r_0, r_1, m) in reg 0, reg 1 and memory, the code terminates with $f(r_0, r_1, m)$ in reg 0, reg 1 and memory.

The formal HOL theorem:

 $f_{pre}(r_0,r_1,m) \Rightarrow$ $\{ (R0, R1, M)$ is $(r_0, r_1, m) * PC$ $p * S \}$ p : E3A00000 E3510000 12800001 15911000 1AFFFFFB $\{ (R0, R1, M) \text{ is } f(r_0, r_1, m) * PC (p + 20) * S \}$

Certificate theorems are proved automatically in the HOL4 system.

Decompilation, under the hood

.

. .

The decompiler automatically derived f from Fox's 7800-line ARM model:

```
.
.
|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0xE3A00000w) \land \negstate.undefined \Rightarrow(NEXT_ARMMMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w)
  (ARM WRITE UNDEF F (ARM WRITE REG 0w 0w (ARM WRITE UNDEF F state))))
|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0xE3510000w) \land \negstate.undefined \Rightarrow(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w)
  (ARM WRITE STATUS (word msb (ARM READ REG 1w state),ARM READ REG 1w state = 0w,
   0w <=+ ARM READ REG 1w state,F) (ARM WRITE UNDEF F state)))
|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x12800001w) ∧
  (¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
   (NEXT\_ARM_MMU cp state = ARM_WRITE_REG 15w (ARM\_READ\_REG 15w state + 4w)
  (ARM WRITE UNDEF F (ARM WRITE REG 0w (ARM READ REG 0w state + 1w) (ARM WRITE UNDEF F state))))
|- (ARM READ MEM ((31 > < 2) (ARM READ REG 15w state)) state = 0x12800001w) \wedge¬(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
  (NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))
|- (ARM READ MEM ((31 > < 2) (ARM READ REG 15w state)) state = 0x15911000w) \land(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
   (NEXT ARM MMU cp state = ARM WRITE UNDEF F (ARM WRITE REG 1w (FORMAT UnsignedWord ((1 >< 0)
   (ARM READ REG 1w state)) (ARM READ MEM ((31 >< 2) (ARM READ REG 1w state)) state))
  (ARM WRTTE REG 15w (ARM READ REG 15w state + 4w) (ARM WRTTE UNDER F state))))|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x15911000w) \wedge¬(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
  (NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))
|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x1AFFFFFBw) ∧
   (¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
  (NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 0xFFFFFFF4w)
  (ARM WRITE UNDEF F state)),
.
```
Decompilation, verification example

Decompiler automatically produced: f , f_{pre} and a certificate.

- \triangleright decompilation dealt with the detailed machine model
- \triangleright safety preconditions were collected in f_{pre}
- \triangleright user is left to do a simple manual proof

Decompilation, verification example

Decompiler automatically produced: f , f_{pre} and a certificate.

- \triangleright decompilation dealt with the detailed machine model
- \triangleright safety preconditions were collected in f_{pre}
- \triangleright user is left to do a simple manual proof

Let *list* formalise "a linked-list is in memory":

 $list(nil, a, m) = a = 0$ $list(\text{cons } x | l, a, m) = \exists a'. m(a) = a' \wedge m(a+4) = x \wedge a \neq 0 \wedge a$ $list(1, a', m) \wedge aligned(a)$

Manual part of verification proof (14 lines):

 $\forall x \ l \text{ a } m.$ list $(l, a, m) \Rightarrow f(x, a, m) = (length(l), 0, m)$ $\forall x \ l \text{ a } m.$ list $(l, a, m) \Rightarrow f_{pre}(x, a, m)$

Decompilation, verification example, cont.

Properties proved for the extracted function f carry over to properties of the machine code:

Decompilation, verification example, cont.

Properties proved for the extracted function f carry over to properties of the machine code:

> $list(l, r_1, m) \Rightarrow$ $\{ (R0, R1, M)$ is $(r_0, r_1, m) * PC$ $p * S \}$ p : E3A00000 E3510000 12800001 15911000 1AFFFFFB $\{(R0, R1, M) \text{ is } (length(l), 0, m) * PC (p + 20) * S \}$

Proof reuse

The manual proof was completely independent of the ARM model. ⇒ possible proof reuse!

Proof reuse

The manual proof was completely independent of the ARM model. \Rightarrow possible proof reuse!

Example

Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f' and f'' , respectively.

Manual proofs can be reused, if $f = f' = f''$.

Proof reuse, cont.

Decompiling the x86 code produces:

$$
f'(eax, esi, m) = let eax = eax \otimes eax in g'(eax, esi, m)
$$

\n
$$
g'(eax, esi, m) = if esi & esi = 0 then (eax, esi, m) else
$$

\nlet esi = m(esi) in
\nlet eax = eax + 1 in
\n
$$
g'(eax, esi, m)
$$

But in this case, easy to prove $f = f'$ (4 lines),

- **►** some tricks can be undone by rewriting, e.g. $\forall x. \times \& x = x$
- resources can be renamed, e.g. substitute r_1 for eax
- \triangleright some instruction orders are irrelevant, e.g. by let-expansion

Summary of part 1: decompilation

Decompilation:

- \triangleright given machine code, produces HOL function $+$ certificate
- \triangleright automates all machine-specific proofs (w/o code annotations)
- \triangleright proof reuse possible, in certain cases

Summary of part 1: decompilation

Decompilation:

- \triangleright given machine code, produces HOL function $+$ certificate
- \triangleright automates all machine-specific proofs (w/o code annotations)
- \triangleright proof reuse possible, in certain cases

Implementation:

- \triangleright concise certificate theorems using separation logic
- \triangleright special loop rule introduces tail-recursive functions
- \triangleright robust, heuristics only used for control-flow discovery

Summary of part 1: decompilation

Decompilation:

- \triangleright given machine code, produces HOL function $+$ certificate
- \triangleright automates all machine-specific proofs (w/o code annotations)
- \triangleright proof reuse possible, in certain cases

Implementation:

- \triangleright concise certificate theorems using separation logic
- \triangleright special loop rule introduces tail-recursive functions
- \triangleright robust, heuristics only used for control-flow discovery

Supported machine languages:

- ▶ ARM model by Fox [TPHOLs'03]
- x86 model by Sarkar et al. [POPL'09]
- ▶ PowerPC model by Leroy [POPL'06]

This talk:

Part 1: verification of existing machine code (via decompilation) Part 2: construction of correct machine code (via compilation) Part 3: case study: verified LISP interpreter

Compilation motivation

Work-flow:

1. user defines functions f , i.e. writes:

mcDefine $f = ...$

2. compiler (mcDefine) produces machine code, which implements f , and proves a certificate theorem:

 \vdash " the generated code executes f"

3. user proves properties of f , since properties of f also describe the generated machine code.

Compilation example

Given function f as input

 $f(r_1) =$ if $r_1 < 10$ then r_1 else let $r_1 = r_1 - 10$ in $f(r_1)$

the compiler generates ARM machine code:

Compilation example

Given function f as input

 $f(r_1) =$ if $r_1 < 10$ then r_1 else let $r_1 = r_1 - 10$ in $f(r_1)$

the compiler generates ARM machine code:

and automatically proves a certificate HOL theorem, which states that f is executed by the generated machine code:

> \vdash { R1 $r_1 * PC p * s$ } p : E351000A 2241100A 2AFFFFFC $\{ R1 f(r_1) * PC (p+12) * s \}$

Compilation, under the hood

(ARM WRITE UNDEF F state)),

. . .

. . .

The compiler proved the certificate w.r.t. Fox's 7800-line ARM model:

```
|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0xE351000Aw) \land ¬state.undefined \Rightarrow(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w)
  (ARM WRITE STATUS (word msb (ARM READ REG 1w state + 0xFFFFFFF6w),
  ARM READ REG 1w state + 0xFFFFFFF6w = 0w, 10w <=+ ARM READ REG 1w state,
  word msb (ARM READ REG 1w state) ∧
  (word_msb (ARM_READ_REG 1w state) < = / = word msb (ARM_READ_REG 1w state + 0xFFFFFFFGW))(ARM WRITE UNDEF F state)))
|- (ARM READ MEM ((31 > < 2) (ARM READ REG 15w state)) state = 0x2241100Aw) \land(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
   (NEXT_ARM_MMU cp state = ARM_WRITE_REG 15w (ARM_READ_REG 15w state + 4w) (ARM_WRITE_UNDEF F
  (ARM WRITE REG 1w (ARM READ REG 1w state + 0xFFFFFFF6w) (ARM WRITE UNDEF F state)))),
|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x2241100Aw) ∧
  ¬(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
  (NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))
|- (ARM READ MEM ((31 > < 2) (ARM READ REG 15w state)) state = 0x2AFFFFFCw) \wedge(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
  (NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 0xFFFFFFF8w)
```

```
|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x2AFFFFFCw) ∧
  ¬(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
  (NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))
```
Compilation example, cont.

One can prove properties of f since it lives inside HOL:

$$
\vdash \forall x. \ f(x) = x \text{ mod } 10
$$

Here 'mod' is modulus over unsigned machine words.

Compilation example, cont.

One can prove properties of f since it lives inside HOL:

$$
\vdash \forall x. \ f(x) = x \text{ mod } 10
$$

Here 'mod' is modulus over unsigned machine words.

Properties proved of f translate to properties of the machine code:

 \vdash {R1 $r_1 * PC p * s$ } p : E351000A 2241100A 2AFFFFFC ${R1 (r_1 \text{ mod } 10) * PC (p+12) * s}$

Compilation example, cont.

One can prove properties of f since it lives inside HOL:

$$
\vdash \forall x. \ f(x) = x \text{ mod } 10
$$

Here 'mod' is modulus over unsigned machine words.

Properties proved of f translate to properties of the machine code:

 \vdash {R1 $r_1 * PC p * s$ } p : E351000A 2241100A 2AFFFFFC ${R1 (r_1 \text{ mod } 10) * PC (p+12) * s}$

Additional feature: the compiler can use the above theorem to extend its input language with: let $r_1 = r_1$ mod 10 in \overline{a}

Additional feature: user-defined extensions

Using our theorem about mod, the compiler accepts:

$$
g(r_1, r_2, r_3) = \text{let } r_1 = r_1 + r_2 \text{ in}
$$

let $r_1 = r_1 + r_3 \text{ in}$
let $r_1 = r_1 \text{ mod } 10 \text{ in}$
 (r_1, r_2, r_3)

The generated code becomes:

Previously proved theorems can be used as building blocks for subsequent compilations.

Implementation

To compile function f :

1. code generation:

generates, without proof, machine code from input f ;

2. decompilation:

derives, via proof, a function f' describing the machine code;

3. certification:

proves $f = f'$.

Features:

- \triangleright code generation completely separate from proof
- \triangleright supports many light-weight optimisations without any additional proof burden: instruction reordering, conditional execution, dead-code elimination, duplicate-tail elimination, ...
- \blacktriangleright allows for significant user-defined extensions

This talk:

Part 1: verification of existing machine code (via decompilation) Part 2: construction of correct machine code (via compilation) Part 3: case study: verified LISP interpreter

Case study: verified LISP interpreter, idea

Why verify a LISP interpreter?

- \triangleright simplest prototype of a complete implementation of a functional language
- \triangleright provides a logically clean platform for future work
- \blacktriangleright shows that compilation scales

Builds on:

- \triangleright extensible compilation from previous section
- \triangleright Mike Gordon's clean relational semantics of evaluation in an applicative subset of LISP 1.5 [ACL2 workshop 2007]

The result is code which seems to be the first formally verified end-to-end implementation of a functional programming language. Case study: verified LISP interpreter, idea

Key idea: if one shows that the ARM instruction

E5933000 ldr r3,[r3]

implements car over a heap of s-expressions (lisp):

isPair
$$
v_1 \Rightarrow
$$

{ $\text{lisp}(v_1, v_2, v_3, v_4, v_5, v_6, l) * pc p }$
 $p : E5933000$
{ $\text{lisp}(car v_1, v_2, v_3, v_4, v_5, v_6, l) * pc (p + 4) }$

then the compiler is able to handle, car over s-expressions:

let $v_1 = \text{car } v_1$ in \overline{a}

The compiler's user-defined extensions can handle abstraction.

Case study: verified LISP interpreter, method

A verified LISP evaluator was constructed:

- 1. the compiler was augmented with car, cdr, cons, etc.
- 2. a function lisp_eval was compiled
- 3. lisp eval was proved to implement Gordon's relational semantics of evaluation in (an applicative subset of) McCarthy's LISP 1.5

As part of this, machine code was verified for:

- \triangleright memory allocation and garbage collection
- \blacktriangleright parsing of s-expressions
- \triangleright printing of s-expressions

Case study: verified LISP interpreter, theorem

The result is an interpreter which parses, evaluates and prints LISP. The theorem certifying its correctness is:

$$
\forall s \ r \ l \ p.
$$
\n
$$
s \rightarrow_{eval} r \ \land \ \text{sexp_ok} \ s \ \land \ \text{lisp_eval_pre}(s, l) \implies
$$
\n
$$
\{\exists a. R3 \ a * string \ a \ (\text{sexp2string} \ s) * space \ s \ l * pc \ p \}
$$
\n
$$
p : ... \ \text{machine code not shown} ...
$$
\n
$$
\{\exists a. R3 \ a * string \ a \ (\text{sexp2string} \ r) * space' \ s \ l * pc \ (p+8968) \}
$$

where:

Case study: verified LISP interpreter, in use

Example: prove

$$
\forall x. \quad \text{(prog } x\text{)} \rightarrow_{\text{eval}} \text{encrypt}(x\text{)}
$$

then instantiate correctness theorem to show that the interpreter always computes encrypt(x) when ($\text{prog } x$) is evaluated:

$$
\forall x \mid p.
$$
\n
$$
\exists x \text{ s.t. } x \land \text{lisp_eval_pre((prog x), l)} \implies
$$
\n
$$
\{\exists a. \text{ R3 } a * \text{string } a \text{ (sexp2string (prog x))} * \text{space (prog x) } l * \text{pc } p \}
$$
\n
$$
p : ... \text{ machine code not shown } ...
$$
\n
$$
\{\exists a. \text{ R3 } a * \text{string } a \text{ (sexp2string (encrypt(x)))} * \text{space' } l * \text{pc (p+8968)} \}
$$

Talk summary

This talk presented tools for:

- ▶ verification of machine code (decompilation) [FMCAD'08]
- ▶ construction of correct code (compilation) [CC'09]

and showed how formally verified applications can be developed:

▶ verified LISP eval for ARM, x86 and PowerPC [TPHOLs'09]

Ack. I thank J Moore for suggesting the phrase "automatic reverse engineering". For details also see my dissertation: Formal verification of machine-code programs

Talk summary

This talk presented tools for:

- ▶ verification of machine code (decompilation) [FMCAD'08]
- ▶ construction of correct code (compilation) [CC'09]

and showed how formally verified applications can be developed:

▶ verified LISP eval for ARM, x86 and PowerPC [TPHOLs'09]

Questions?

(I'm happy to explain technical details and give a demo separately.)

Ack. I thank J Moore for suggesting the phrase "automatic reverse engineering". For details also see my dissertation: Formal verification of machine-code programs

Extra slide: Gordon's LISP semantics

Defined using three mutually recursive relations \rightarrow_{eval} , \rightarrow_{app} and \rightarrow_{eval_list} .

(p, ρ)	\rightarrow	(v, ρ)	(c, ρ)	\rightarrow	$([1, \rho)$	\rightarrow	(v, ρ)																																												
(p, ρ)	\rightarrow	(v, ρ)	(c, ρ)	\rightarrow	$([1, \rho)$	\rightarrow	(v, ρ)	\rightarrow	$(v$																																										

Here c, v, k and f range over value constants, value variables, function constants and function variables, respectively.