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Trust.

Do you trust your programs? . . . written in C, C++, Java, Haskell

High assurance requires proof, but what is assumed about:

I the source language?

I the compiler?

I the execution environment of the target languages?

Most verification proof are of source code, but source code is not
what runs on real hardware.



Trust the machine code

For hardware, programs are machine code:

34 F8 45 E5 34 82 03 00 ...

Real guarantees for actual executable code requires
proving properties of machine code.



This talk:

Part 1: verification of existing machine code (via decompilation)

Part 2: construction of correct machine code (via compilation)

Part 3: case study: verified LISP interpreter



Verification of machine code

Challenges:

I machine code operates at a low level of abstraction

I machine languages differ from each other

I detailed models of such are large and hard to learn

ARM/x86/PowerPC model

...
(7800/4500/2100 lines)

...

correctness statement
{P} code {Q}

Contribution: a method/tool which

I exposes as little as possible of the big models to the user;

I makes non-automatic proofs independent of the models
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Decompilation

Example: Given some ARM machine code,

0: E3A00000
4: E3510000
8: 12800001

12: 15911000
16: 1AFFFFFB

the decompiler extracts a readable function:

f (r0, r1, m) = let r0 = 0 in g(r0, r1, m)

g(r0, r1, m) = if r1 = 0 then (r0, r1, m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1, m)
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Decompilation, correct?

Decompiler automatically proves a certificate theorem which states
that f describes the effect of the ARM code, informally:

for any initially value (r0, r1, m) in reg 0, reg 1 and memory,
the code terminates with f (r0, r1, m) in reg 0, reg 1 and memory.

The formal HOL theorem:

fpre(r0, r1, m)⇒

{ (R0, R1, M) is (r0, r1, m) ∗ PC p ∗ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is f (r0, r1, m) ∗ PC (p + 20) ∗ S }

Certificate theorems are proved automatically in the HOL4 system.



Decompilation, under the hood
The decompiler automatically derived f from Fox’s 7800-line ARM model:

.

.

.

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0xE3A00000w) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE UNDEF F (ARM WRITE REG 0w 0w (ARM WRITE UNDEF F state))))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0xE3510000w) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE STATUS (word msb (ARM READ REG 1w state),ARM READ REG 1w state = 0w,

0w <=+ ARM READ REG 1w state,F) (ARM WRITE UNDEF F state)))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x12800001w) ∧
(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE UNDEF F (ARM WRITE REG 0w (ARM READ REG 0w state + 1w) (ARM WRITE UNDEF F state))))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x12800001w) ∧
¬(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x15911000w) ∧
(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE UNDEF F (ARM WRITE REG 1w (FORMAT UnsignedWord ((1 >< 0)

(ARM READ REG 1w state)) (ARM READ MEM ((31 >< 2) (ARM READ REG 1w state)) state))

(ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x15911000w) ∧
¬(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x1AFFFFFBw) ∧
(¬ARM READ STATUS sZ state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 0xFFFFFFF4w)

(ARM WRITE UNDEF F state)),

.

.

.



Decompilation, verification example
Decompiler automatically produced: f , fpre and a certificate.

I decompilation dealt with the detailed machine model

I safety preconditions were collected in fpre
I user is left to do a simple manual proof

Let list formalise “a linked-list is in memory”:

list(nil, a, m) = a = 0

list(cons x l , a, m) = ∃a′. m(a) = a′ ∧m(a+4) = x ∧ a 6= 0 ∧
list(l , a′, m) ∧ aligned(a)

Manual part of verification proof (14 lines):

∀x l a m. list(l , a, m) ⇒ f (x , a, m) = (length(l), 0, m)

∀x l a m. list(l , a, m) ⇒ fpre(x , a, m)



Decompilation, verification example
Decompiler automatically produced: f , fpre and a certificate.

I decompilation dealt with the detailed machine model

I safety preconditions were collected in fpre
I user is left to do a simple manual proof

Let list formalise “a linked-list is in memory”:

list(nil, a, m) = a = 0

list(cons x l , a, m) = ∃a′. m(a) = a′ ∧m(a+4) = x ∧ a 6= 0 ∧
list(l , a′, m) ∧ aligned(a)

Manual part of verification proof (14 lines):

∀x l a m. list(l , a, m) ⇒ f (x , a, m) = (length(l), 0, m)

∀x l a m. list(l , a, m) ⇒ fpre(x , a, m)



Decompilation, verification example, cont.

Properties proved for the extracted function f carry over to
properties of the machine code:

list(l , r1, m)⇒

{ (R0, R1, M) is (r0, r1, m) ∗ PC p ∗ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is (length(l), 0, m) ∗ PC (p + 20) ∗ S }
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Proof reuse

The manual proof was completely independent of the ARM model.

⇒ possible proof reuse!

Example

Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f ′ and f ′′, respectively.

Manual proofs can be reused, if f = f ′ = f ′′.
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Proof reuse, cont.

Decompiling the x86 code produces:

f ′(eax , esi , m) = let eax = eax ⊗ eax in g ′(eax , esi , m)

g ′(eax , esi , m) = if esi & esi = 0 then (eax , esi , m) else
let esi = m(esi) in
let eax = eax+1 in

g ′(eax , esi , m)

But in this case, easy to prove f = f ′ (4 lines),

I some tricks can be undone by rewriting, e.g. ∀x . x & x = x

I resources can be renamed, e.g. substitute r1 for eax

I some instruction orders are irrelevant, e.g. by let-expansion



Summary of part 1: decompilation

Decompilation:

I given machine code, produces HOL function + certificate

I automates all machine-specific proofs (w/o code annotations)

I proof reuse possible, in certain cases

Implementation:

I concise certificate theorems using separation logic

I special loop rule introduces tail-recursive functions

I robust, heuristics only used for control-flow discovery

Supported machine languages:

I ARM model by Fox [ TPHOLs’03 ]

I x86 model by Sarkar et al. [ POPL’09 ]

I PowerPC model by Leroy [ POPL’06 ]
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Part 3: case study: verified LISP interpreter



Compilation motivation

Work-flow:

1. user defines functions f , i.e. writes:

mcDefine ‘f = ...’

2. compiler (mcDefine) produces machine code, which
implements f , and proves a certificate theorem:

` “ the generated code executes f ”

3. user proves properties of f , since properties of f also
describe the generated machine code.



Compilation example

Given function f as input

f (r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f (r1)

the compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL theorem, which states
that f is executed by the generated machine code:

` {R1 r1 ∗ PC p ∗ s }
p : E351000A 2241100A 2AFFFFFC

{R1 f (r1) ∗ PC (p+12) ∗ s }
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Compilation, under the hood

The compiler proved the certificate w.r.t. Fox’s 7800-line ARM model:

.

.

.

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0xE351000Aw) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE STATUS (word msb (ARM READ REG 1w state + 0xFFFFFFF6w),

ARM READ REG 1w state + 0xFFFFFFF6w = 0w, 10w <=+ ARM READ REG 1w state,

word msb (ARM READ REG 1w state) ∧
(word msb (ARM READ REG 1w state) <=/=> word msb (ARM READ REG 1w state + 0xFFFFFFF6w)))

(ARM WRITE UNDEF F state)))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x2241100Aw) ∧
(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F

(ARM WRITE REG 1w (ARM READ REG 1w state + 0xFFFFFFF6w) (ARM WRITE UNDEF F state)))),

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x2241100Aw) ∧
¬(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x2AFFFFFCw) ∧
(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 0xFFFFFFF8w)

(ARM WRITE UNDEF F state)),

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state = 0x2AFFFFFCw) ∧
¬(ARM READ STATUS sC state) ∧ ¬state.undefined ⇒
(NEXT ARM MMU cp state = ARM WRITE REG 15w (ARM READ REG 15w state + 4w) (ARM WRITE UNDEF F state))

.

.

.



Compilation example, cont.

One can prove properties of f since it lives inside HOL:

` ∀x . f (x) = x mod 10

Here ‘mod’ is modulus over unsigned machine words.

Properties proved of f translate to properties of the machine code:

` {R1 r1 ∗ PC p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{R1 (r1 mod 10) ∗ PC (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in
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Additional feature: user-defined extensions

Using our theorem about mod, the compiler accepts:

g(r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

(r1, r2, r3)

The generated code becomes:

E0811002 add r1,r1,r2
E0811003 add r1,r1,r3
E351000A MACRO INSERT r1 mod 10 [part:1/3]
2241100A MACRO INSERT r1 mod 10 [part:2/3]
2AFFFFFC MACRO INSERT r1 mod 10 [part:3/3]

Previously proved theorems can be used as building blocks for
subsequent compilations.



Implementation

To compile function f :

1. code generation:
generates, without proof, machine code from input f ;

2. decompilation:
derives, via proof, a function f ′ describing the machine code;

3. certification:
proves f = f ′.

Features:

I code generation completely separate from proof

I supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional
execution, dead-code elimination, duplicate-tail elimination, ...

I allows for significant user-defined extensions
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Case study: verified LISP interpreter, idea

Why verify a LISP interpreter?

I simplest prototype of a complete implementation of a
functional language

I provides a logically clean platform for future work

I shows that compilation scales

Builds on:

I extensible compilation from previous section

I Mike Gordon’s clean relational semantics of evaluation in
an applicative subset of LISP 1.5 [ACL2 workshop 2007]

The result is code which seems to be the first formally verified
end-to-end implementation of a functional programming language.



Case study: verified LISP interpreter, idea

Key idea: if one shows that the ARM instruction

E5933000 ldr r3,[r3]

implements car over a heap of s-expressions (lisp):

isPair v1 ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E5933000
{ lisp (car v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 4) }

then the compiler is able to handle, car over s-expressions:

let v1 = car v1 in

The compiler’s user-defined extensions can handle abstraction.



Case study: verified LISP interpreter, method

A verified LISP evaluator was constructed:

1. the compiler was augmented with car, cdr, cons, etc.

2. a function lisp eval was compiled

3. lisp eval was proved to implement Gordon’s relational
semantics of evaluation in (an applicative subset of)
McCarthy’s LISP 1.5

As part of this, machine code was verified for:

I memory allocation and garbage collection

I parsing of s-expressions

I printing of s-expressions



Case study: verified LISP interpreter, theorem

The result is an interpreter which parses, evaluates and prints LISP.

The theorem certifying its correctness is:

∀s r l p.

s →eval r ∧ sexp ok s ∧ lisp eval pre(s, l) =⇒
{ ∃a. R3 a ∗ string a (sexp2string s) ∗ space s l ∗ pc p }
p : ... machine code not shown ...

{ ∃a. R3 a ∗ string a (sexp2string r) ∗ space′ s l ∗ pc (p+8968) }

where:

s →eval r is “s evaluates to r in Gordon’s semantics”
sexp ok s is “s contains no bad symbols”

lisp eval pre(s, l) is “s can be evaluated with heap limit l”
string a str is “string str is stored in memory at address a”

space s l is “there is enough memory to setup heap of size l”



Case study: verified LISP interpreter, in use

Example: prove

∀x . (prog x)→eval encrypt(x)

then instantiate correctness theorem to show that the interpreter
always computes encrypt(x) when (prog x) is evaluated:

∀x l p.

sexp ok x ∧ lisp eval pre((prog x), l) =⇒
{ ∃a. R3 a ∗ string a (sexp2string (prog x)) ∗ space (prog x) l ∗ pc p }
p : ... machine code not shown ...

{ ∃a. R3 a ∗ string a (sexp2string (encrypt(x))) ∗ space′ l ∗ pc (p+8968) }



Talk summary

This talk presented tools for:

I verification of machine code (decompilation) [ FMCAD’08 ]

I construction of correct code (compilation) [ CC’09 ]

and showed how formally verified applications can be developed:

I verified LISP eval for ARM, x86 and PowerPC [ TPHOLs’09 ]

Questions?
(I’m happy to explain technical details and give a demo separately.)

Ack. I thank J Moore for suggesting the phrase “automatic reverse engineering”.

For details also see my dissertation: Formal verification of machine-code programs
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Extra slide: Gordon’s LISP semantics

Defined using three mutually recursive relations →eval , →app and →eval list .

ok name v
(v , ρ) →eval ρ(v) (c, ρ) →eval c ([ ], ρ) →eval nil

(p, ρ) →eval nil ∧ ([gl ], ρ) →eval s
([p → e; gl ], ρ) →eval s

(p, ρ) →eval x ∧ x 6= nil ∧ (e, ρ) →eval s
([p → e; gl ], ρ) →eval s

can apply k args
(k, args, ρ) →app k args

(ρ(f ), args, ρ) →app s ∧ ok name f
(f , args, ρ) →app s

(e, ρ[args/vars]) →eval s
(λ[[vars]; e], args, ρ) →app s

(fn, args, ρ[fn/x]) →app s
(label [[x]; fn], args, ρ) →app s

([ ], ρ) →eval list [ ]
(e, ρ) →eval s ∧ ([el ], ρ) →eval list sl

([e; el ], ρ) →eval list [s; sl ]

Here c, v , k and f range over value constants, value variables, function constants and

function variables, respectively.


