
Can Advanced Type Systems Be Usable?
An Empirical Study of Ownership,
Assets, and Typestate in Obsidian

Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

1

PLs Are User Interfaces
• A PL is a user interface for programmers to accomplish their goals

• Therefore, PLs should be amenable to HCI techniques!

• Today, I will show how we used HCI techniques to design and evaluate a new PL.

• Goal: help ordinary programmers obtain strong safety guarantees

• Bottom line:

• Sophisticated type systems can both guarantee soundness and be usable.

• Methods we developed were useful for iterating on and evaluating the language.
2

Blockchains and Smart
Contracts

Blockchain

• Distributed ledger

• For parties that have not

established trust

Smart Contracts

• Programs that process

transactions against
blockchain state

• Examples
• Bonds, insurance
• Gambling
• Supply chain

3

Smart Contract Security

• The DAO bug: $50 million stolen + hard fork

• Parity bug: $30 million stolen + frantic workaround

• “…Fourth, some blame for this bug lies with the Solidity language…” [1]

• Programming is hard. How can languages prevent bugs?

[1] https://paritytech.io/the-multi-sig-hack-a-postmortem/
4

Obsidian
Overhauling Blockchains with States to
Improve Development of Interactive
Application Notation

5https://en.wikipedia.org/wiki/File:Lipari-Obsidienne_(5).jpg

Usability risk analysis
 Cognitive Dimensions of Notations
 Comparison with prior systems
 User research

Theoretical refinement
 Completing core calculus
 Proofs of key properties

User-centered needs assessment
 Interviews
 Corpus studies
 Contextual inquiry

Empirical methods
 Usability studies
 Natural programming
 Performance testing
 Case studies

Usability studies
Quantitative comparisons
Randomized controlled trial (RCT)

Preliminary theoretical analysis
 Core calculus development
 Statements of key properties
 Proof sketches

Low-fidelity prototyping
 Example programs
 Interpreter/compiler for key constructs
 Natural programming elicitation

Prototype refinement
 Interpreter/compiler implementation
 Programmer experience work

Need finding

Design conception

Risk analysis

Design refinement

Assessment

1

2

3

5

4

PLIERS: Programming Language
Iterative Evaluation and
Refinement System

Design Ideas

• Blockchain applications frequently:

• Support different operations depending on state

• Note: DAO hack resulted, in part, from unexpected,
reentrant operations [DAO 2016]

Typestate

Linearity

[DeLine 2004]

[Wadler 1990, Girard 1987]

• Manage important assets, such as virtual currencies

• Some smart contract bugs have involved trapped/

forgotten assets [Delmolino et al. 2015]

7

• This combination is new, and neither technique had been shown to be usable

Without Typestate

• Type lacks state information

• LightSwitch x = …

Off

LS

x

8

With Typestate

• Type includes state information

• LightSwitch@Off x = …

Off

LS

x

9

Without Linearity

Money m = …

transferMoney(m, alice);

transferMoney(m, bob); Compiler says OK!

10

With Linearity

owned Money m = …

transferMoney(m, alice);

transferMoney(m, bob); Compiler says ERROR!

11

Technical Challenge:
Typestate and Aliasing

Off

LS

LightSwitch@Off s LightSwitch@Off s

12

On

LS

LightSwitch@On s

(turns the switch on)

LightSwitch@Off s

If there is a typestate-specifying reference, then all other
references must not change typestate.

13

Technical Challenge:
Typestate and Aliasing

contract InsurancePolicy {

 state Active {

 Money @ Owned benefit;

 }

 state Claimed;

 state Expired;

 InsurancePolicy@Active(Money @ Owned >> Unowned m) {

 ->Active(benefit = m);

 }

 transaction claim(InsurancePolicy @ Active >> Claimed this)

 returns Money @ Owned

 {

 Money result = benefit;

 ->Claimed;

 return result;

 }

}

Obsidian Example

Active

Claimed Expired

14

☞

contract InsurancePolicy {

 state Active {

 Money @ Owned benefit;

 }

 state Claimed;

 state Expired;

 InsurancePolicy@Active(Money @ Owned >> Unowned m) {

 ->Active(benefit = m);

 }

 transaction claim(InsurancePolicy @ Active >> Claimed this)

 returns Money @ Owned

 {

 Money result = benefit;

 ->Claimed;

 return result;

 }

}

Obsidian Example

Active

Claimed Expired

15

☞

contract InsurancePolicy {

 state Active {

 Money @ Owned benefit;

 }

 state Claimed;

 state Expired;

 InsurancePolicy@Active(Money @ Owned >> Unowned m) {

 ->Active(benefit = m);

 }

 transaction claim(InsurancePolicy @ Active >> Claimed this)

 returns Money @ Owned

 {

 Money result = benefit;

 ->Claimed;

 return result;

 }

}

Obsidian Example

Active

Claimed Expired

16

☞

contract InsurancePolicy {

 state Active {

 Money @ Owned benefit;

 }

 state Claimed;

 state Expired;

 InsurancePolicy@Active(Money @ Owned >> Unowned m) {

 ->Active(benefit = m);

 }

 transaction claim(InsurancePolicy @ Active >> Claimed this)

 returns Money @ Owned

 {

 Money result = benefit;

 ->Claimed;

 return result;

 }

}

Obsidian Example

Active

Claimed Expired

17

☞

contract InsurancePolicy {

 state Active {

 Money @ Owned benefit;

 }

 state Claimed;

 state Expired;

 InsurancePolicy@Active(Money @ Owned >> Unowned m) {

 ->Active(benefit = m);

 }

 transaction claim(InsurancePolicy @ Active >> Claimed this)

 returns Money @ Owned

 {

 Money result = benefit;

 ->Claimed;

 return result;

 }

}

Obsidian Example

Active

Claimed Expired

18

☞

contract InsurancePolicy {

 state Active {

 Money @ Owned benefit;

 }

 state Claimed;

 state Expired;

 InsurancePolicy@Active(Money @ Owned >> Unowned m) {

 ->Active(benefit = m);

 }

 transaction claim(InsurancePolicy @ Active >> Claimed this)

 returns Money @ Owned

 {

 Money result = benefit;

 ->Claimed;

 return result;

 }

}

Obsidian Example

Active

Claimed Expired

19

☞

contract InsurancePolicy {

 state Active {

 Money @ Owned benefit;

 }

 state Claimed;

 state Expired;

 InsurancePolicy@Active(Money @ Owned >> Unowned m) {

 ->Active(benefit = m);

 }

 transaction claim(InsurancePolicy @ Active >> Claimed this)

 returns Money @ Owned

 {

 Money result = benefit;

 ->Claimed;

 return result;

 }

}

Obsidian Example

Active

Claimed Expired

20

☞

Quantitative Study

• Is Obsidian better than Solidity:

• First, can we conduct a user study in an unfamiliar language at all?

• We'd have to recruit and train participants…

• Are people able to complete tasks in Obsidian despite the
complex type system?

• Do Solidity users insert the kinds of bugs that Obsidian detects?
21

Participants

• N=20 participants (14 M, 6 F)

• Medians:

• 6 years programming experience (9 Solidity, 5 Obsidian)

• 1 year professional experience (1 Solidity, 1 Obsidian)

• 2 years Java experience (2 Solidity, 1.5 Obsidian)
22

Procedure

• Tutorial on their assigned condition

• with practice problems and compiler

• questions answered

• Three programming tasks

• no questions allowed

• compiler only — no runtime enviornment

• Four hours. Paid with $75 Amazon gift certificate.
23

Tutorial

24

Solidity Obsidian

Avg. time 86 mins 98 mins

Standard
deviation 28 mins 21 mins

Task Objectives

• Reflect use cases of community interest

• Range of difficulties

• Assess: do Solidity participants lose assets? Can Obsidian participants get work done?

• Assess: could Obsidian participants successfully use ownership for security? If so, is it
faster than using dynamic enforcement?

• Assess: how do Solidity and Obsidian compare in an open-ended programming task?

25

Auction Task

contract Auction {

 address maxBidder; // the bidder who made the highest bid so far

 uint maxBidAmount;

 // 'payable' indicates that we can transfer money to this address

 address payable seller;

 // Allow withdrawing previous bid money for bids that were outbid

 mapping(address => uint) pendingReturns;

 enum State { Open, BidsMade, Closed }

 State state;

 constructor(address payable s) public {

 seller = s;

 state = State.Open;

 }

implements withdrawal pattern

Condition: Solidity

Time limit: 30 minutes

RQ: Do Solidity participants lose assets?
Can Obsidian participants achieve goals?

26

 function bid() public payable {

 if (state == State.Open) {

 maxBidder = msg.sender;

 maxBidAmount = msg.value;

 state = State.BidsMade;

 }

 else {

 if (state == State.BidsMade) {

 //if the newBid is > than the current Bid

 if (msg.value > maxBidAmount) {

 //1. TODO: fill this in.

 }

 else {

 //2. TODO: return the newBid money to the bidder,

 // since the newBid wasn't high enough.

 // You may call any other functions as needed.

 }

 }

 else {

 revert ("Can only make a bid on an open auction.");

 }

 }

 } 27

 function bid() public payable {

 if (state == State.Open) {

 maxBidder = msg.sender;

 maxBidAmount = msg.value;

 state = State.BidsMade;

 }

 else {

 if (state == State.BidsMade) {

 //if the newBid is > than the current Bid

 if (msg.value > maxBidAmount) {

 //1. TODO: fill this in.

 maxBidder = msg.sender;

 maxBidAmount = msg.value;

 }

 else {

 //2. TODO: return the newBid money to the bidder,

 // since the newBid wasn't high enough.

 // You may call any other functions as needed.

 msg.sender.transfer(msg.value);

 }

 }

 else {

 revert ("Can only make a bid on an open auction.");

 }

 }

 } (P48)

Forgot refund!

OK, but neglects withdrawal pattern

28

Results: Successes

Solidity
(N=10)

Obsidian
(N=10)

Finished in
30 mins 9 8

Correct
answer 2 6

29

2 of these
corrected lost
asset errors

Variable 'maxBid' is an owning reference to an
asset, so it cannot be overwritten.

(p ≈ 0.09)

Results: Failures (Among Completions)

Solidity
(N=10)

Obsidian
(N=10)

Overwrote prior refund 4 0
Forgot refund 3 0

pendingReturns[maxBidder] = maxBidAmount;

30

Prescription Task

• Problem: how to enforce that a Prescription is only deposited
once in a Pharmacy

• Solution: transfer ownership to Pharmacy
transaction depositPrescription(Prescription@Shared p)

 returns int {…}

transaction depositPrescription(Prescription@Owned >> Unowned p)

 returns int {…}

31

Prescription in Solidity

• Need global state tracking registrations.

32

Time Limit

• 35 minutes.

33

Prescription Results

Solidity Obsidian

Correct dynamic solution 2 1

Correct static solution N/A 6

34

Threats to Validity

• Lab study

• Four hours

• Students

• Tasks modeled after real-world examples but not necessarily
representative

35

Observations

• Experiments with sophisticated type systems are practical!

• Features are teachable in a consistent way

• Participants leveraged features effectively

• Abuse of disown shows opportunities for improvement

36

Keys to Success

• Iteratively design and pilot documentation and tasks

• Draw tasks from real-world contexts (external validity)

• Recruit appropriately (e.g. we recruited Master's students)

• Tutorial should include practice and assessment

37

Obsidian RCT Conclusion

• You, too, can evaluate your language design with randomized controlled trials (RCTs)

• The road is long (about six months for Obsidian — piloting is required!). But:

• No other way to know your work actually benefits people other than yourself

• Build and test associated materials (e.g., documentation) along the way

• Identify opportunities for improvement along the way

38

BACK-PORTING DESIGN
CHOICES

• Wanted to assess usability of typestate

• Teach people Obsidian?

• No, add typestate to Java.

• Can do this without an implementation (Wizard of Oz)!

Orthogonal Ownership and
Typestate

• N=6 students in lab study (using Java annotations)
• Asked participants to fix a typestate- and ownership-related bug
• Allowing duplicate prescription refills

• Result: users had serious difficulties
• “I haven’t seen...types that complex in an actual language...enforced at

compile time.”
• Participants thought about ownership dynamically rather than statically
• Expanded tutorial and practice did not seem to help

owned Prescription@Full

40

Assignment and Parameter-Passing

• Initial design: @Owned means acquires ownership

transaction deposit (Money@Owned money) {…}

• User study results (N=6): this is confusing

• “when I [annotate this constructor type @Owned], I’m not sure if I’m making a

variable owned or I’m transferring ownership.”

• People expected (non-modular) interprocedural analysis

• Revised design: make change in ownership explicit

transaction deposit (Money@Owned >> Unowned money) {…}
41

Type Declarations

• Initial design (from prior work):

• Always specify typestate when declaring variable

LightSwitch@On s = …

• User study results (N=5): Too confusing!

• LightSwitch@Off s1 = new LightSwitch();

 s1.turnOn();

• Revised design

• Specify initial typestate, and any transition, in method signature (modularity)

• No typestate on local variables; support static typestate assertions

[s1 @ Off];

42

CONCLUSION
• Usability studies can

• reveal serious problems, leading to design improvements

• help you prepare for an RCT

• Teaching people strong type systems well enough to obtain results can be
done quickly

• But user studies are expensive — choose RQs wisely!

FAQ (1)

• If a usability study goes great, is the language usable?

• No, you need an RCT for that.

• You got the wrong participants.

• At least the results may generalize to the population from which I
drew them.

44

FAQ (2)

• You didn't get enough participants.

• I will never be able to find all the obstacles people will face.

• If my RCT got significant results, then you should complain about my external
validity instead.

• Your changes might make the language better for novices but worse for experts.

• Maybe, but theory can help evaluate this question.
45

