Can Advanced lype Systems Be Usable!
An empirical Study of Ownership,
Assets, and lypestate in Obsidian

Michael Coblenz, jonathan Aldrich, Brad A. Myers, Joshua Sunshine

5&@0& DEPARTMENT OF lg/lill.ﬂ)engle g - |Sn(s)t|tuterr
: : FTWARE
e COMPUTER SCIENCE University RESEARCH

Pls Are User Interfaces

* A PL is a user interface for programmers to accomplish their goals

e 1o LS shiollld be amenable to HCI techniques!

» Joday, | will show how we used HCI technigues to desigh and evaluate a new PL.

» Goal: help ordinary programmers obtain strong safety gsuarantees

¢ Bottom line;

» Sophisticated type systems can both guarantee soundness and be usable.

» Methods we developed were useful for iterating on and evaluating the language.

2

Blockchains and Smart
Selniiaiai:

Blockchain

' L istributed

¢« For parties

ledger

‘hat have not

established -

ELIST

Smart Contracts

* Programs that process
transactions against
blockchain state

* Examples
* Bonds, Insurance
» Gambling
* Supply chain

Smart Contract Security

F e DAO bug: $50 million stolen + hard fork

» Parity bug: $30 million stolen + frantic workaround
» '...Fourth, some blame for this bug lies with the Solidity language...” [|]

* Programming Is hard. How can languages prevent bugs/

| |] https://paritytech.io/the-multi-sig-hack-a-postmortem/

4

Obsidian

Overhauling Blockchains with States to
Improve Development of Interactive
Application Notation

https://en.wikipedia.org/wiki/File:Lipari-Obsidienne_(5).|pg

Need finding

P L I E RS P I”Ogr‘am m | ﬂ g Laﬂgu age <1 User-centered needs assessment

: . Interviews _
Iterative Evaluation and Corpus studies
Refinement System

Contextual inquiry

Design conception

<2 > Preliminary theoretical analysis Low-fidelity prototyping
Core calculus development Example programs
i Statements of key properties | € Interpreter/compiler for key constructs
Proof sketches Natural programming elicitation

Risk analysis

Usability risk analysis
Cognitive Dimensions of Notations
Comparison with prior systems
User research

7\
w)

Design refinement

Empirical methods
Usability studies
Natural programming

Performance testing
Case studies

o "

[

Theoretical refinement Prototype refinement
Completing core calculus <+ Interpreter/compiler implementation
Proofs of key properties Programmer experience work
Assessment

<5> Usability studies
Quantitative comparisons

Randomized controlled trial (RCT)

» Blockchain applications freg

Design ldeas

uently:

» Support different operations depending on state

Note: DAO hack resu

ted, In pa

reentrant operations

DAO 20

1, from unexpected,

]

- Manage important assets, such as virtual currencies

* Some smart contract bugs have involved trapped/

forgotten assets [Delmolino et al. 2015]

[

Deline 2004

[Wadler 1990, Girard 1987/]

» | his combination Is new, and neither technique had been shown to be usable

v

Without lypestate

» [ype lacks state information

* LightSwitch x = ..

X—’

With lypestate

» [ype includes state information

. LightSwitch@Off x = ..

Without Linearity

Money m = ..

transferMoney(m, alice);

transferMoney(m, bob); Compiler says OK!

With Linearity

owned Money m = ..

transferMoney(m, alice);

transferMoney(m, bob); Compiler says ERROR!

Jechnical Challenge:
|ypestate and Aliasing

LightSwitch@Off s LightSwitch@Off s

Jechnical Challenge:
|ypestate and Aliasing

LightSwitch@On s LightSwitch@Off s

(turns the switch on)

T there Is a typestate-specifying reference, then all other

references must not change typestate.

Obsidian Example

contract InsurancePolicy {
state Active {
S Money @ Owned benefit;
}
state Claimed;
state Expired;

InsurancePolicy@Active(Money @ Owned >> Unowned m) <{
—>Active(benefit = m);
I3

transaction claim(InsurancePolicy @ Active >> Claimed this)

returns Money @ Owned
{ YN

Money result = benefit;
—>Claimed;
return result;

}
}

Obsidian Example

contract InsurancePolicy {
state Active {
Money @ Owned benefit;
I3

state Claimed;
state Expired;

1=~ InsurancePolicy@Active(Money @ Owned >> Unowned m) {
—>Active(benefit = m);
I3

transaction claim(InsurancePolicy @ Active >> Claimed this)

returns Money @ Owned
{ YN

Money result = benefit;
—>Claimed;
return result;

}

Obsidian Example

contract InsurancePolicy {
state Active {
Money @ Owned benefit;
I3

state Claimed;
state Expired;

InsurancePolicy@Active(Money @ Owned >> Unowned m) <{

R —>Active(benefit = m);

}

transaction claim(InsurancePolicy @ Active >> Claimed this)

returns Money @ Owned
{ YN

Money result = benefit;
—>Claimed;
return result;

}
}

Obsidian Example

contract InsurancePolicy {
state Active {
Money @ Owned benefit;
I3

state Claimed;
state Expired;

InsurancePolicy@Active(Money @ Owned >> Unowned m) <{
—>Active(benefit = m);
I3

1=~ transaction claim(InsurancePolicy @ Active >> Claimed this)

returns Money @ Owned
{ YN

Money result = benefit;
—>Claimed;
return result;

}
}

Obsidian Example

contract InsurancePolicy {
state Active {
Money @ Owned benefit;
I3

state Claimed;
state Expired;

InsurancePolicy@Active(Money @ Owned >> Unowned m) <{
—>Active(benefit = m);
I3

transaction claim(InsurancePolicy @ Active >> Claimed this)

returns Money @ Owned
{ YN

(R Money result = benefit;
—>Claimed;
return result;

}
}

Obsidian Example

contract InsurancePolicy {
state Active {
Money @ Owned benefit;
I3

state Claimed;
state Expired;

InsurancePolicy@Active(Money @ Owned >> Unowned m) <{
—>Active(benefit = m);
I3

transaction claim(InsurancePolicy @ Active >> Claimed this)

returns Money @ Owned
{ YN

Money result = benefit;

(R —>Claimed;

return result;
s

}

Obsidian Example

contract InsurancePolicy {
state Active {
Money @ Owned benefit;
I3

state Claimed;
state Expired;

InsurancePolicy@Active(Money @ Owned >> Unowned m) <{
—>Active(benefit = m);
I3

transaction claim(InsurancePolicy @ Active >> Claimed this)

returns Money @ Owned
{ YN

Money result = benefit;
—>Claimed;
R return result;
s
+

20

Quantrtative Study

» |s Obsidian better than Solidity:

* FIrst, can we conduct a user study In an unfamiliar language at all

* We'd have to recrurt and train participants. ..

» Are people able to complete tasks in Obsidian despite the
complex type system!?

» Do Solidity users insert the kinds of bugs that Obsidian detects!

2|

Participants

» N=20 participants (14 ™M, 6)

« Medians:

6 years programming experience (9 Solidity, 5 Obsidian)
» | year professional experience (I Solidity, | Obsidian)

B Vears |ava experience (2 Solidity, 1.5 Obsidian)

2

Procedure

- |utorial on their assigned condition
* with practice problems and compller
* guestions answerea

* [hree programming tasks
* nNo questions allowed

£ compller only — no runtime enviornment

P

- certificate.

» Four hours. Paid with $/5 Amazon g

23

Obsidian

Getting Started

® Obsidian Language Tutorial
B Ownership - Introduction
Principles of ownership
Ownership - Transactions
Ownership - Variables
Ownership - Miscellaneous
Assets
States - Introduction
States - Manipulating State
States - Miscellaneous
States and Assets
Using Obsidian on a Blockchain

Taking Advantage of Ownership

Obsidian Reference

{utoria

Docs » Obsidian Tutorial » Ownership - Introduction
© Edit on GitHub

Ownership — Introduction

Principles of ownership

Our new programming language is object-oriented. It includes
contracts, which are like classes, and can have fields and transactions,
analogous to Java fields and methods respectively. An Obsidian
program must have exactly one main contract . In addition, of the

many variables or fields that reference objects, exactly one of them
can own the object, as seen in diagram (a) below. An object can have
any number of Unowned references, and, if the object is not Owned,
it can have any number of Shared references (shown in (b) below). An
object with Shared references can also have Unowned references,
but not Owned ones.

Object@Unowned Object@Shared

Object@Unowned Object@Unowned Object@Shared /J\ Object@Shared

24

Avg. time

Standard

deviation

Solidity

86 mins

0 s

Obsidian

96 mins

el nlle

Jask Objectives

» Reflect use cases of community interest
» Range of difficulties
» Assess: do Solidity participants lose assets! Can Obsidian participants get work done!?

» Assess: could Obsidian participants successfully use ownership for security? If so, Is It
faster than using dynamic enforcement?

* Assess: how do Solidity and Obsidian compare in an open-ended programming task!

25

Condition: Solidrty -
Time limit: 30 minutes Auction lask

contract Auction {
address maxBidder; // the bidder who made the highest bid so far
uint maxBidAmount;

// payable’ 1indicates that we can transfer money to this address
address payable seller;

// Allow withdrawing previous bid money for bids that were outbid
mapping(address => uint) pendingReturns;

enum State { Open, BidsMade, Closed } , ,
State state; implements withdrawal pattern

constructor(address payable s) public {
seller = s;

tate = State.Open; o -
il s U RQ: Do Solidity participants lose assets?

Can Obsidian participants achieve goals!

26

function bid() public payable {
if (state == State.Open) {
maxBidder = msg.sender;
maxBidAmount = msg.value;
state = State.BidsMade;

}
else {
if (state == State.BidsMade) {
//1if the newBid is > than the current Bid
if (msg.value > maxBidAmount) {
/1. 10D0: Fill this in.
}
else {
//2:. TODO: relurn L[he nhewBid money te the pidder,
// since the newBid wasn't high enough.
// You may call any other functions as needed.
I
I
else {
revert ("Can only make a bid on an open auction.");
h
i

function bid() public payable {
if (state == State.Open) {
maxBidder = msg.sender;
maxBidAmount = msg.value;
Shate — State.BidsMade;

}
else {
if (state == State.BidsMade) {
//1if the newBid is > than the current Bid
if (msg.value > maxBidAmount) {
/1. 30D0: till this in:
maxBidder = msg.sender; Forgot refund!
maxBidAmount = msg.value;
)
else {
/2. T0D0: return the hewBid money te the bidder.
// since the newBid wasn't high enough.
// You may call any other functions as needed.
msg.sender.transfer(msg.value);
} |
} OK, but neglects withdrawal pattern
else {
revert ("Can only make a bid on an open auction.");
}
i

1 - (P48

Results: Successes

Solidrty Obsidian
(N=10) (N=10) 2 of these

corrected lost

Finished In Q asset errors

30 mins 7
answer

Variable 'maxBid' 1s an owning reference to an
asset, so 1t cannot be overwritten.

2

Results: Fallures (Among Completions)

pendingReturns [maxBidder] = maxBidAmount;

Solidity Obsidian
(N=10) (N=10)

Overwrote prior refund < 0

Forgot refund = 0

30

Prescription lask

* Problem: how to enforce that a Prescription is only deposited
once in a Pharmacy

» Solution: transfer ownership to Pharmacy

transaction depositPrescription(Prescription@Shared p)

returns int {..} '

transaction depositPrescription(Prescription@Owned >> Unowned p)
returns int {..}

- |

Prescription In Solidity

» Need global state tracking registrations.

5

T1ime Limit

e 35 minutes.

-

Prescription Results

Correct dynamic solution

Correct static solution N/A

o

[hreats to Validity

» Lab stuay

k Ollr hours

« Students

» [asks modeled after real-world examples but not necessarily
representative

55

Observations

» EXperiments with sophisticated type systems are practical

* Features are teachable in a consistent way

» Participants leveraged features effectively

» Abuse of d1s0own shows opportunities for improvement

36

Keys to Success

teratively design and pilot documentation and tasks

Draw tasks from real-world contexts (external validity)

Recrurt appropriately (e.g. we recruited Master's students)

lutorial should include practice and assessment

57

Cibsidian RC T Conclusion

* You, too, can evaluate your language design with randomized controlled trials (RCTs)

» [he road is long (about six months for Obsidian — piloting Is required!). But:

- No other way to know your work actually benefits people other than yourself

» Build and test associated materials (e.g., documentation) along the way

» |dentity opportunities for improvement along the way

38

BACK-PORTING DESIGN
EHOICES

* Wanted to assess usability of typestate

» Jeach people Obsidian?

» No, add typestate to Java.

» (Can do this without an iImplementation (Wizard of Oz)

Orthogonal Ownership anc
lypestate

owned Prescription@Full

» NN=6 students In lab study (using Java annotations)

» Asked participants to fix a typestate- and ownership-related bug

» Allowing duplicate prescription retfills

Result users had serious difficulties

. | haven't seen...types that complex in an actual language...enforced at
compile time.”

- Participants thought about ownership dynamically rather than statically

. Expanded tutorial and practice did not seem to help

40

Assisnment and Parameter-Passing

Initial design: @Owned means acquires ownership

transaction deposit (Money@Owned money) A..}

User study results (N=6): this I1s confusing

‘when | [annotate -

ifils €ons

variable owned or

‘ructor type @0wned], I'm not sure if 'm making a

T frans

erring ownership.”

People expected (non-modular) interprocedural analysis

Revised design: make change in ownership explicrt

transaction deposit (Money@Owned >> Unowned money) 1..}

45

lype Declarations

Initial design (from prior work):
Always specify typestate when declaring variable
LightSwitch@On s = ..
User study results (N=5): Too confusing!
* LightSwitch@Off s1 = new LightSwitch();

s1.turnOn();
Revised design

Specify Initial typestate, and any transition, in method signature (modularity)
No typestate on local variables; support static typestate assertions

[s1 @ Off];

47

LN USIC

- Usabllity studies can

* reveal serious problems, leading to design Improvements
£ =Ib ou prepare for an RC T

* leaching people strong type systems well enough to obtain results can be

done quickly

BB Liser studies are expensive — choose RQs wisely!

ga @

» |f a usability study goes great, I1s the language usable!

£ 10 oU need an RC [for that
* You got the wrong participants.

» At least the results may generalize to the po
drew them.

44

bulation from which |

FA)2

* You didn't get enough participants.
* | will never be able to find all the obstacles people will face.

» [T my RCT got significant results, then you should complain about my external
validity instead.

* Your changes might make the language better for novices but worse for experts.

» Maybe, but theory can help evaluate this question.

45

