
FuzzChick: Coverage-Guided,
Specification-Based Testing

Leonidas Lampropoulos
Michael Hicks
Benjamin C. Pierce

HCSS
April 29, 2019

Q: Is it a good idea to combine specification-
based testing a la QuickCheck with fuzzing?

A: Yes

Fuzz Testing

Basic Idea

• Start with a sample input to a
System-Under-Test
• Use bit-level mutations to

generate lots of similar inputs
• See if any of them lead to

crashes

Some Flavors of Fuzzing

Bug-Finding Efficiency

User Effort

Completely
Random
Fuzzing

Fuzzing with Custom Input
Generators / Grammars

(e.g., libfuzzer, IMF, FuzzM)

Coverage-
Guided Fuzzing

(e.g. AFL)
“Smart” Coverage-

Guided Fuzzing (e.g.
Driller, VUzzer)

Coverage-Guided Fuzzing

Crash

Program Under
Test

Report to User

Fuzzer

Binary Input
Seed Pool

New
Paths?

Yes

Mutator

Mutated
seed

No
Throw away

Coverage info

In
st

ru
m

en
ta

tio
n

Initial seed
Random bits

RNG

Initial Seed

Random
Specification-Based

Testing

Basic Idea

• Programmer writes a formal specification
of software system or component as a
function from sample inputs to Booleans
• Executable “property” of S-U-T

• Tool generates many random inputs and
applies the function to each one
• If a counterexample is found, a greedy shrinking

process is used to find a minimal one

• Attractive midpoint between unit tests
and full-scale formal verification
• Famously embodied in Haskell

QuickCheck

Koen
Claessen

John
Hughes

An Example Property

Definition prop_sort_correct (l : list nat) : bool :=
is_sorted (sort l).

QuickCheck uses the type of this function to
automatically generate random inputs of the
appropriate form (lists of numbers)

Random Specification-Based Testing

Failure

Generator

SUT + Property

Report to User

Random
bits

Random
structured

data

RNG

Success/
Discard

• A variant of Haskell’s QuickCheck
tool…
• ported to the Coq proof assistant…
• and fed on steroids
• e.g., a mechanically verified

coretness proof for the testing
framework itself

A Harder Property

Definition prop_insert_correct (x : nat) (l : list nat) : bool :=
is_sorted l ==> is_sorted (insert x l).

QuickChick’s default behavior:
• Generate many random input lists
• Evaluate is_sorted on each one
• Discard the ones for which is_sorted returns

false
• Evaluate is_sorted (insert x l) on those that are left

Flavors of Random Specification-Based Testing

Bug-Finding Efficiency

User Effort

Naïve
Random
Testing

Hand-
Written

Generators

?

Key Insight

Use coverage information to guide the
mutation of complex structured data just
like AFL uses it to mutate bit strings!

“Semantic Mutation”

Coverage-Guided,
Specification-Based

Testing

FuzzChick

Failure

Generator

SUT + Property

Report to User

FuzzChick

Seed Pool

New
Paths?

Yes

“Semantic
Mutator”

Random
bits

Success/
Discard

No
Throw away

RNG

Coverage info

In
st

ru
m

en
ta

tio
n

Random
structured

data

Mutated
structured

data

Structured
data

Semantic Mutators

1

2 3

4

All “stepwise variants”*

* Actually, a probability distribution over all stepwise variants…

Semantic Mutators: Modification

1

2 3

4

0

2 3

4

1

2 3

5

Etc.

Semantic Mutators: Deletion

1

2 3

4

1

2

4

1

3

1
32

4
Etc.

Semantic Mutators: Addition

1

2 3

4

1

2 3

4

1

2 3

4

Etc.

5 5

1

2 3

4 5

Evaluation

Case Study: Dynamic IFC

• System under test:
• Simple machine with built-in dynamic information-flow monitor
• Sensitive data is tagged “Secret”
• Monitor detects illicit flows from Secret inputs to Public outputs

• i.e. violations of noninteference

• Evaluation setup:
• Manually create many buggy “variants” of correct monitor
• See how long it takes to find a counterexample for each bug, under various testing

regimes
• Purely random
• FuzzChick
• Hand-crafted test input generators

Noninterference – Abstract Machines

r0: 0

r1: 42

r2: 1
…

Register File

17

Heap

…

3
2

…

Noninterference – Security Labels

r0: 0 @Public

r1: 42 @Public

r2: 1 @Secret
…

Register File

17 @Secret

Heap

…

3 @Public
2 @Public

…

Noninterference – Indistinguishability

r0: 0 @Public

r1: 42 @Public

r2: 1 @Secret
…

Register File

17 @Secret

Heap

…

3 @Public
2 @Public

…

r0: 0 @Public

r1: 42 @Public

r2: 1 @Secret
…

Register File

17 @Secret

Heap

…

3 @Public
2 @Public

…

~

Noninterference – Indistinguishability

r0: 0 @Public

r1: 42 @Public

r2: 1 @Secret
…

Register File

17 @Secret

Heap

…

3 @Public
2 @Public

…

r0: 0 @Public

r1: 42 @Public

r2: 0 @Secret
…

Register File

17 @Secret

Heap

…

3 @Public
2 @Public

…

~

Noninterference – Property

Definition prop_noninterference (m1 m2 : machine) : bool :=
indistinguishable m1 m2 ==>
indistinguishable (step m1) (step m2).

• Generate many random input machines
• Register file, heap, and program

• Evaluate indistinguishable on each one
• Discard the ones for which indistinguishable

returns false
• Step the machines
• Evaluate indistinguishable on the result

Noninterference – Property

Definition prop_noninterference (m1 m2 : machine) : bool :=
indistinguishable m1 m2 ==>
indistinguishable (step m1) (step m2).

Three approaches:
1. Naïve automatic generate-and-test
2. FuzzChick with an almost trivial random seed generator
3. Optimized handwritten generators (ICFP 2013)

Results

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

M
TT

F
(S

EC
O

N
D

S)

HandWritten FuzzChick Pure Random

Numbers on x axis
denote buggy
variants of a correct
IFC enforcement
mechanism, sorted
by height of the
orange bar
(effectiveness of
FuzzChick)

Log scale!

Definition prop_noninterference (m1 m2 : machine) : bool :=
indistinguishable m1 m2 ==>
indistinguishable (step m1) (step m2).

What does “almost automatic” mean?

Failure

Generator

SUT + Property

Report to User

FuzzChick

Seed Pool

New
Paths?

Yes

“Semantic
Mutator”

Random
bits

Success/
Discard

No
Throw away

RNG

Coverage info

In
st

ru
m

en
ta

tio
n

Random
structured

data

Mutated
structured

data

Structured
data

Initial random seed = Pair of machines

Approaches to finding “interesting” pairs of low-indistinguishable
machine states:

1. Generate two random states. Mutate them until they become low-
indistinguishable.

2. Generate one random state. Copy it. Mutate until it becomes
interesting.

Conclusion

Bug-Finding Efficiency

User Effort

Naïve
Random
Testing

Hand-
Written

Generators

FuzzChick

Future work: Import more ideas from fuzzing!

Bug-Finding Efficiency

User Effort

Completely
Random
Fuzzing

Fuzzing with Custom Input
Generators / Grammars

(e.g., libfuzzer, IMF)

Coverage-
Guided Fuzzing

(e.g. AFL)
“Smart” Coverage-

Guided Fuzzing (e.g.
Driller, VUzzer)

lots of other
interesting points
in this space…!

• We introduced coverage guided, property based testing (CGPT), a novel
combination of specification-based random testing and coverage-guided
fuzzing
• We implemented this technique in FuzzChick, a redesign of QuickChick
• We evaluated FuzzChick by using it to test an existing formalized

development of low-level information-flow tracking
• On this challenging application domain, FuzzChick significantly outperforms

QuickChick
• not nearly as good as carefully hand-written generators
• but requires almost no effort to use

Summary

