Correctness by Construction:
Developing a Commercial
Secure System

Roderick Chapman
Praxis Critical Systems

Praxis
Copyright © 2002 Praxis Critical Systems Limited ‘% C,'itical

s Systems

Outline

 Background - The MULTOS CA
 Development Approach
 Formal Methods

 Results

 Conclusions

 Resources

) e | Draxis
Copyright © 2002 Praxis Critical Systems Limited :/ Critical
M Systems

Background - The MULTOS CA

Certification Authority for MULTOS scheme

Distributed multiprocessor system

“Certifiable to ITSEC Eb6”

COTS mandatory

) e | Draxis
Copyright © 2002 Praxis Critical Systems Limited .‘/ Critical
M Systems

Development Approach

« Overall process conformed to E6

« Conformed in detail where retro-fitting
impossible

* Our deliverables could individually be certified
to E6

 Reliance on COTS for E6 claims

minimised/eliminated
Copyright © 2002 Praxis Critical Systems Limited .% CJ,C; ;fé; [
LN Systems

Development Approach - Limitations

e COTS not certified

* Praxis not responsible for all items necessary
for certification

* No formal proof

) e | Draxis
Copyright © 2002 Praxis Critical Systems Limited .‘/ Critical
M Systems

Development Lifecycle

« User requirements definition with REVEAL®

« User interface prototype

 Formalisation of security policy and top level
specification

« System architecture definition

* Detailed design including formal process
structure

* Implementation in SPARK and VC++
 Top-down testing with coverage measurement

e DA
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

Lifecycle
Deliverables

Reguiraments

MSpecification &
Architecture

User
Requirements

User-
Interface
Specification

Data
Dictionary

Build
Specification

F o High Level
Top-Level Design
Specification
" pesign /S |\ _—~_ .
FI
Database Hoclon
Design
Module
Structure
- \
Lpplementary
Design
acuments
T T — — — ——
Code | T T T T T T T T T T ~. T
Package
Specifications Process and
Task Code
Database Package
Code Bodies

Window
Class Code

Copyright © 2002 Praxis Critical Systems Limited

Praxis
Critical
Systems

e e e O e e e e s e o e e e o e e e e e o e e et e e o]

User
Requiremeants

Phase 1 - i
Requirements

Formal
Security
FPaolicy Maodel

« User requirements included informal security
policy

— assets; threats; countermeasures

« Appropriate items formalised
— only technical items
— related to lifecycle stage

 Z used to express formal model
— simplified GCHQ CESG Manual F

* Tracing incorporated from the start
— Threats < Policy < FSPM

Praxis
Copyright © 2002 Praxis Critical Systems Limited -%V Critical

s Systems

Phase 2 - rsﬁac?ﬁ;aﬁﬂﬁ‘V ———————— / ——————————— x_ ________
| Architecture

S |

SpeC{flcatlon and | Formal g Lov s

AI' Chl tGCtur e : Specification Declgh Specification
I

B e

« Distinguish “top level description” from “top level
design”

 FTLS

— fully formal top level description in Z
— traced to FSPM (as well as URS)
— no formal demonstration of correspondence

- HLD

— Many aspects
— NOT all formalised
— CSP for process structure

- UIS

— Look and feel

Praxis
Copyright © 2002 Praxis Critical Systems Limited _% ‘ Critical
() Systems

Phase 3 -
Detailed

Design

Design

Process SBer-
Datat_:ase Design tnteq'f_ac:e
Dasign Design

Module
Structure

Data
Dictionary
ETPF’D‘“@"EW Build
Bﬁlgn S if' tl
pecification

- R B S S R S R S S

Copyright © 2002 Praxis Critical Systems Limited

Praxis
Critical
Systems

Phase 3 - Detailed Design

 Database Design
— ERA modelling of persistent system state
— Logical, physical DB design
— Protection mechanisms (e.g. MACs, encryption)
— Transactions, recovery, sizing etc.

* Process Design
— CSP model

« User Interface Design

— Windows, Dialogs, Messages, State machines
— Interface between the GUI and the application software

Praxis
Copyright © 2002 Praxis Critical Systems Limited % Critical
s Systems

Phase 3 - Detailed Design

Module Structure

— Software architecture

— Information-flow centric view. Careful separation of security
enforcing from non-secure functions

Supplementary Designs

— Refinements (some formal) of key components - e.g. crypto
key storage manager

Build Specification
— Very detailed “how to build the MGKC” document

Data Dictionary

Praxis
Copyright © 2002 Praxis Critical Systems Limited _% Critical
() Systems

(Code [NY T~_
- |
: Specifications Process and
|
COde | Task Code
|
|
I ¥ *
: Database Package Window
: Code Bodies Class Code
|
|
|

T L T oy

 Which Languages to use?
 Which development technologies?

* Principles:
— Use what we know from safety-critical systems
— Aim for 6 months between re-boots - on Windows NT

— Prefer sound technology over “fast-moving” or
“fashionable” technologies

Praxis
Copyright © 2002 Praxis Critical Systems Limited _% Critical
() Systems

. S N S SN S S S DS S S S S S

Coding the CA

 No one language or technology could do the
job.
* Mixed language development - the right tools

for the job!
— SPARK 30% “Security kernel” of tamper-proof
software
— Ada9%5 30% Infrastructure (concurrency, inter-task
and inter-process communications,
database interfaces etc.), bindings to
ODBC and Win32
— C++ 30% GUI (Microsoft Foundation Classes)
- C 5% Device drivers, cryptographic
algorithms
— SQL 5% Database stored procedures
Copyright © 2002 Praxis Critical Systems Limited _% gﬁ?ié; /
() Systems

Phase 5 - Verification and Validation

* Review everything, involving customers where
possible.
— Automate as much as possible, so manual reviews are focussed on
what’s important
 Testing
— Top-down incremental builds

— Real GUI from tested at build N forms the test harness for
application software in build N+1

— Systematic derivation of tests from requirements, UIS and FTLS
— Collected statement and branch coverage
— Additional test scenarios to fill coverage gaps

Praxis
Copyright © 2002 Praxis Critical Systems Limited % Critical
s Systems

Formal Methods

« FSPM, FTLS and some supplementary designs
are expressed in Z.

* Process design is in CSP, and model-checked
using the FDR tool.

« SPARK can be seen as a formal programming
language

e DA
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

Formal Methods - Successes

 Formalisation leads to early discovery of
ambiguity and inconsistency.

 FTLS was a contractual baseline in the project.

 Model checking of CSP found significant design
errors which were fixed prior to coding.

e Concurrent and distributed code ran first time.

e DA
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

Formal Methods - Limitations

* Not all design elements have appropriate formal
notations

 Tool support still needs work in some areas

« Customers perceive FM as difficult

o | Praxis
Copyright © 2002 Praxis Critical Systems Limited :/) Critical
(N Systens

SPARK

« SPARK is a programming language, design
approach, and static analysis technology
designed for high-integrity systems.

 The language is an annotated subset of Ada95.

« A strong track record in the safety-critical
industry, although, ironically, its roots are in the
security community.

e DA
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

SPARK - Design Goals

 Logical Soundness
— No ambiguities

« Simplicity of formal description

— A formal descriptions of SPARK’s static and dynamic
semantics were constructed some years ago.

 Expressive power

« Security
— All language rule violations are detectable statically.
« Verifiability

— Formal proof of correctness is achievable. Tool support
exists and is used.

Praxis
Copyright © 2002 Praxis Critical Systems Limited _% Critical
() Systems

SPARK and Static Analysis

* Rule of thumb - if you want someone to use a
static analysis tool, it must be as fast as (or
faster) than the compiler!

« SPARK is entirely unambiguous.

 SPARK facilitates constructive static analysis.

e DA
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

SPARK and Secure Systems

« SPARK has some unique properties that make
is appropriate for the development of secure

systems:
— Complete program-wide data- and information-flow analysis
— Verification-condition generation and theorem proving allow
proof of
» Partial correctness
* Invariant properties
* Freedom from runtime exceptions (e.g. no buffer

overflows!)
Praxis
Copyright © 2002 Praxis Critical Systems Limited -% Critical
s Systems

SPARK and Secure Systems (2)

 SPARK be compiled with no supporting run-
time library - useful if evaluation of such COTS
components is a problem.

- SPARK is (as far as we know) the only general-
purpose programming language that meets the
requirements of Common Criteria.

e DA
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

What’s wrong with SPARK?

It’s Ada: despite technical strength, Ada
remains misunderstood.

It’s not “hot” or “fashionable”.

It’s (relatively) unknown outside Europe. Why?

You’re not using it!

Praxis
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

The CA Development - Results

* 1 year after delivery, 4 defects were found in
100,000 lines of code - 0.04 defects per kloc.

* Productivity was 28 lines of code per day,
taking all project phases into account.

« Total effort: 3571 person days.

e | Prxis
Critical
Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

Results - Distribution of Effort

Activity Effort (%)
User Requirements 2
Specification and architecture 25
Design and code 14
Test 34
Fault fixing 6
Project management 10
Training
Design authority
Development- and Target-
environment
Gopyright © 2002 Praxis Critcal Systems Limited -
S

oo

Praxis
Critical
Systems

Conclusions

* Three main themes:

« Successful use of COTS through careful
architectural design and separation.

* Practical, large-scale use of formal methods.
Both a technical and commercial success.

« Use of SPARK (mixed with other languages) to
build a highly available, robust system.

e DA
Critical

Systems

Copyright © 2002 Praxis Critical Systems Limited _%

S

Resources

 The paper: IEEE Software, Jan/Feb 2002.

« SPARK: www.sparkada.com

* MULTOS: www.multos.com

« Us:

Copyright © 2002 Praxis Critical Systems Limited % i gﬁl;ﬁé; [
M Systems

Questions?

o | Praxis
Copyright © 2002 Praxis Critical Systems Limited :/) Critical
M Systems

	Outline
	Background - The MULTOS CA
	Development Approach
	Development Approach - Limitations
	Development Lifecycle
	Lifecycle Deliverables
	Phase 1 - Requirements
	Phase 2 -Specification andArchitecture
	Phase 3 -DetailedDesign
	Phase 3 - Detailed Design
	Phase 3 - Detailed Design
	Phase 4 -Code
	Coding the CA
	Phase 5 - Verification and Validation
	Formal Methods
	Formal Methods - Successes
	Formal Methods - Limitations
	SPARK
	SPARK - Design Goals
	SPARK and Static Analysis
	SPARK and Secure Systems
	SPARK and Secure Systems (2)
	What’s wrong with SPARK?
	The CA Development - Results
	Results - Distribution of Effort
	Conclusions
	Resources

