
Copyright © 2002 Praxis Critical Systems Limited

 Correctness by Construction:
Developing a Commercial

Secure System

Roderick Chapman
Praxis Critical Systems

Copyright © 2002 Praxis Critical Systems Limited

Outline

• Background - The MULTOS CA
• Development Approach
• Formal Methods
• Results
• Conclusions
• Resources

Copyright © 2002 Praxis Critical Systems Limited

Background - The MULTOS CA

• Certification Authority for MULTOS scheme
– enable cards
– sign application load certificates

• Distributed multiprocessor system
– security
– throughput

• “Certifiable to ITSEC E6”
– not to be certified within project timescale

• COTS mandatory
– infeasible to build from scratch

Copyright © 2002 Praxis Critical Systems Limited

Development Approach

• Overall process conformed to E6
• Conformed in detail where retro-fitting

impossible
– Development environment security
– Language and specification standards
– Configuration management and audit information

• Our deliverables could individually be certified
to E6

• Reliance on COTS for E6 claims
minimised/eliminated
– Assumed arbitrary but non-byzantine behaviour
– Assumed machines fail-silent on crash, for instance

Copyright © 2002 Praxis Critical Systems Limited

Development Approach - Limitations

• COTS not certified

• Praxis not responsible for all items necessary
for certification
– operational documentation
– operational environment

• No formal proof

Copyright © 2002 Praxis Critical Systems Limited

Development Lifecycle

• User requirements definition with REVEAL®
• User interface prototype
• Formalisation of security policy and top level

specification
• System architecture definition
• Detailed design including formal process

structure
• Implementation in SPARK and VC++
• Top-down testing with coverage measurement

Copyright © 2002 Praxis Critical Systems Limited

Lifecycle
Deliverables

Copyright © 2002 Praxis Critical Systems Limited

Phase 1 -
Requirements

• User requirements included informal security
policy
– assets; threats; countermeasures

• Appropriate items formalised
– only technical items
– related to lifecycle stage

• Z used to express formal model
– simplified GCHQ CESG Manual F

• Tracing incorporated from the start
– Threats � Policy � FSPM

Copyright © 2002 Praxis Critical Systems Limited

Phase 2 -
Specification and
Architecture

• Distinguish “top level description” from “top level
design”

• FTLS
– fully formal top level description in Z
– traced to FSPM (as well as URS)
– no formal demonstration of correspondence

• HLD
– Many aspects
– NOT all formalised
– CSP for process structure

• UIS
– Look and feel

Copyright © 2002 Praxis Critical Systems Limited

Phase 3 -
Detailed
Design

Copyright © 2002 Praxis Critical Systems Limited

Phase 3 - Detailed Design

• Database Design
– ERA modelling of persistent system state
– Logical, physical DB design
– Protection mechanisms (e.g. MACs, encryption)
– Transactions, recovery, sizing etc.

• Process Design
– CSP model

• User Interface Design
– Windows, Dialogs, Messages, State machines
– Interface between the GUI and the application software

Copyright © 2002 Praxis Critical Systems Limited

Phase 3 - Detailed Design

• Module Structure
– Software architecture
– Information-flow centric view. Careful separation of security

enforcing from non-secure functions

• Supplementary Designs
– Refinements (some formal) of key components - e.g. crypto

key storage manager

• Build Specification
– Very detailed “how to build the MGKC” document

• Data Dictionary

Copyright © 2002 Praxis Critical Systems Limited

Phase 4 -
Code

• Which Languages to use?
• Which development technologies?
• Principles:

– Use what we know from safety-critical systems
– Aim for 6 months between re-boots - on Windows NT
– Prefer sound technology over “fast-moving” or

“fashionable” technologies

Copyright © 2002 Praxis Critical Systems Limited

Coding the CA

• No one language or technology could do the
job.

• Mixed language development - the right tools
for the job!
– SPARK 30% “Security kernel” of tamper-proof

software
– Ada95 30% Infrastructure (concurrency, inter-task

and inter-process communications,
database interfaces etc.), bindings to
ODBC and Win32

– C++ 30% GUI (Microsoft Foundation Classes)
– C 5% Device drivers, cryptographic

algorithms
– SQL 5% Database stored procedures

Copyright © 2002 Praxis Critical Systems Limited

Phase 5 - Verification and Validation

• Review everything, involving customers where
possible.
– Automate as much as possible, so manual reviews are focussed on

what’s important

• Testing
– Top-down incremental builds
– Real GUI from tested at build N forms the test harness for

application software in build N+1
– Systematic derivation of tests from requirements, UIS and FTLS
– Collected statement and branch coverage
– Additional test scenarios to fill coverage gaps

Copyright © 2002 Praxis Critical Systems Limited

Formal Methods

• FSPM, FTLS and some supplementary designs
are expressed in Z.

• Process design is in CSP, and model-checked
using the FDR tool.

• SPARK can be seen as a formal programming
language

Copyright © 2002 Praxis Critical Systems Limited

Formal Methods - Successes

• Formalisation leads to early discovery of
ambiguity and inconsistency.

• FTLS was a contractual baseline in the project.
– No debate over a fault (we pay for it!) or a change (they pay

for it!)
– A strong commercial success.

• Model checking of CSP found significant design
errors which were fixed prior to coding.

• Concurrent and distributed code ran first time.
– Simple translation from CSP to Win32 Named Pipes and Ada

tasks.

Copyright © 2002 Praxis Critical Systems Limited

Formal Methods - Limitations

• Not all design elements have appropriate formal
notations
– What is a “formal architecture” anyway?

• Tool support still needs work in some areas
– Model checking stressed available computing resources
– Tool support for Z remains rudimentary

• Customers perceive FM as difficult

Copyright © 2002 Praxis Critical Systems Limited

SPARK

• SPARK is a programming language, design
approach, and static analysis technology
designed for high-integrity systems.

• The language is an annotated subset of Ada95.

• A strong track record in the safety-critical
industry, although, ironically, its roots are in the
security community.

Copyright © 2002 Praxis Critical Systems Limited

SPARK - Design Goals

• Logical Soundness
– No ambiguities

• Simplicity of formal description
– A formal descriptions of SPARK’s static and dynamic

semantics were constructed some years ago.
• Expressive power
• Security

– All language rule violations are detectable statically.
• Verifiability

– Formal proof of correctness is achievable. Tool support
exists and is used.

Copyright © 2002 Praxis Critical Systems Limited

SPARK and Static Analysis

• Rule of thumb - if you want someone to use a
static analysis tool, it must be as fast as (or
faster) than the compiler!

• SPARK is entirely unambiguous.
– So analysis is both efficient and deep.
– E.g. complete information-flow analysis of SPARK is

decidable in polynomial time/space.

• SPARK facilitates constructive static analysis.

Copyright © 2002 Praxis Critical Systems Limited

SPARK and Secure Systems

• SPARK has some unique properties that make
is appropriate for the development of secure
systems:
– Complete program-wide data- and information-flow analysis
– Verification-condition generation and theorem proving allow

proof of
• Partial correctness
• Invariant properties
• Freedom from runtime exceptions (e.g. no buffer

overflows!)

Copyright © 2002 Praxis Critical Systems Limited

SPARK and Secure Systems (2)

• SPARK be compiled with no supporting run-
time library - useful if evaluation of such COTS
components is a problem.
– GCC compiles SPARK in this fashion.

• SPARK is (as far as we know) the only general-
purpose programming language that meets the
requirements of Common Criteria.
– …and ITSEC, and Def. Stan. 00-55, and CENELEC 50128…

Copyright © 2002 Praxis Critical Systems Limited

What’s wrong with SPARK?

• It’s Ada: despite technical strength, Ada
remains misunderstood.
– GCC might change this…

• It’s not “hot” or “fashionable”.

• It’s (relatively) unknown outside Europe. Why?

• You’re not using it!

Copyright © 2002 Praxis Critical Systems Limited

The CA Development - Results

• 1 year after delivery, 4 defects were found in
100,000 lines of code - 0.04 defects per kloc.
– These were, of course, corrected under our warranty.

• Productivity was 28 lines of code per day,
taking all project phases into account.
– This compares favourably with other high-integrity projects.

• Total effort: 3571 person days.

Copyright © 2002 Praxis Critical Systems Limited

Results - Distribution of Effort

3Development- and Target-
environment

3Design authority
3Training
10Project management
6Fault fixing
34Test
14Design and code
25Specification and architecture
2User Requirements
Effort (%)Activity

Copyright © 2002 Praxis Critical Systems Limited

Conclusions

• Three main themes:

• Successful use of COTS through careful
architectural design and separation.

• Practical, large-scale use of formal methods.
Both a technical and commercial success.

• Use of SPARK (mixed with other languages) to
build a highly available, robust system.

Copyright © 2002 Praxis Critical Systems Limited

Resources

• The paper: IEEE Software, Jan/Feb 2002.
– We have reprints here.

• SPARK: www.sparkada.com

• MULTOS: www.multos.com

• Us:
– rod.chapman@praxis-cs.co.uk
– anthony.hall@praxis-cs.co.uk

Copyright © 2002 Praxis Critical Systems Limited

Questions?

	Outline
	Background - The MULTOS CA
	Development Approach
	Development Approach - Limitations
	Development Lifecycle
	Lifecycle Deliverables
	Phase 1 - Requirements
	Phase 2 -Specification andArchitecture
	Phase 3 -DetailedDesign
	Phase 3 - Detailed Design
	Phase 3 - Detailed Design
	Phase 4 -Code
	Coding the CA
	Phase 5 - Verification and Validation
	Formal Methods
	Formal Methods - Successes
	Formal Methods - Limitations
	SPARK
	SPARK - Design Goals
	SPARK and Static Analysis
	SPARK and Secure Systems
	SPARK and Secure Systems (2)
	What’s wrong with SPARK?
	The CA Development - Results
	Results - Distribution of Effort
	Conclusions
	Resources

