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Background - The MULTOS CA

Certification Authority for MULTOS scheme

Distributed multiprocessor system

“Certifiable to ITSEC Eb6”

COTS mandatory
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Development Approach

« Overall process conformed to E6

« Conformed in detail where retro-fitting
impossible

* Our deliverables could individually be certified
to E6

 Reliance on COTS for E6 claims

minimised/eliminated
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Development Approach - Limitations

e COTS not certified

* Praxis not responsible for all items necessary
for certification

* No formal proof
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Development Lifecycle

« User requirements definition with REVEAL®

« User interface prototype

 Formalisation of security policy and top level
specification

« System architecture definition

* Detailed design including formal process
structure

* Implementation in SPARK and VC++
 Top-down testing with coverage measurement
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User
Requiremeants

Phase 1 - i
Requirements

Formal
Security
FPaolicy Maodel

« User requirements included informal security
policy

— assets; threats; countermeasures

« Appropriate items formalised
— only technical items
— related to lifecycle stage

 Z used to express formal model
— simplified GCHQ CESG Manual F

* Tracing incorporated from the start
— Threats < Policy < FSPM
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« Distinguish “top level description” from “top level
design”

 FTLS

— fully formal top level description in Z
— traced to FSPM (as well as URS)
— no formal demonstration of correspondence

- HLD

— Many aspects
— NOT all formalised
— CSP for process structure

- UIS

— Look and feel
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Phase 3 - Detailed Design

 Database Design
— ERA modelling of persistent system state
— Logical, physical DB design
— Protection mechanisms (e.g. MACs, encryption)
— Transactions, recovery, sizing etc.

* Process Design
— CSP model

« User Interface Design

— Windows, Dialogs, Messages, State machines
— Interface between the GUI and the application software
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Phase 3 - Detailed Design

Module Structure

— Software architecture

— Information-flow centric view. Careful separation of security
enforcing from non-secure functions

Supplementary Designs

— Refinements (some formal) of key components - e.g. crypto
key storage manager

Build Specification
— Very detailed “how to build the MGKC” document

Data Dictionary
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 Which Languages to use?
 Which development technologies?

* Principles:
— Use what we know from safety-critical systems
— Aim for 6 months between re-boots - on Windows NT

— Prefer sound technology over “fast-moving” or
“fashionable” technologies
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Coding the CA

 No one language or technology could do the
job.
* Mixed language development - the right tools

for the job!
— SPARK 30% “Security kernel” of tamper-proof
software
— Ada9%5 30% Infrastructure (concurrency, inter-task
and inter-process communications,
database interfaces etc.), bindings to
ODBC and Win32
— C++ 30% GUI (Microsoft Foundation Classes)
- C 5% Device drivers, cryptographic
algorithms
— SQL 5% Database stored procedures
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Phase 5 - Verification and Validation

* Review everything, involving customers where
possible.
— Automate as much as possible, so manual reviews are focussed on
what’s important
 Testing
— Top-down incremental builds

— Real GUI from tested at build N forms the test harness for
application software in build N+1

— Systematic derivation of tests from requirements, UIS and FTLS
— Collected statement and branch coverage
— Additional test scenarios to fill coverage gaps
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Formal Methods

« FSPM, FTLS and some supplementary designs
are expressed in Z.

* Process design is in CSP, and model-checked
using the FDR tool.

« SPARK can be seen as a formal programming
language
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Formal Methods - Successes

 Formalisation leads to early discovery of
ambiguity and inconsistency.

 FTLS was a contractual baseline in the project.

 Model checking of CSP found significant design
errors which were fixed prior to coding.

e Concurrent and distributed code ran first time.
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Formal Methods - Limitations

* Not all design elements have appropriate formal
notations

 Tool support still needs work in some areas

« Customers perceive FM as difficult
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SPARK

« SPARK is a programming language, design
approach, and static analysis technology
designed for high-integrity systems.

 The language is an annotated subset of Ada95.

« A strong track record in the safety-critical
industry, although, ironically, its roots are in the
security community.
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SPARK - Design Goals

 Logical Soundness
— No ambiguities

« Simplicity of formal description

— A formal descriptions of SPARK’s static and dynamic
semantics were constructed some years ago.

 Expressive power

« Security
— All language rule violations are detectable statically.
« Verifiability

— Formal proof of correctness is achievable. Tool support
exists and is used.
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SPARK and Static Analysis

* Rule of thumb - if you want someone to use a
static analysis tool, it must be as fast as (or
faster) than the compiler!

« SPARK is entirely unambiguous.

 SPARK facilitates constructive static analysis.
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SPARK and Secure Systems

« SPARK has some unique properties that make
is appropriate for the development of secure

systems:
— Complete program-wide data- and information-flow analysis
— Verification-condition generation and theorem proving allow
proof of
» Partial correctness
* Invariant properties
* Freedom from runtime exceptions (e.g. no buffer

overflows!)
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SPARK and Secure Systems (2)

 SPARK be compiled with no supporting run-
time library - useful if evaluation of such COTS
components is a problem.

- SPARK is (as far as we know) the only general-
purpose programming language that meets the
requirements of Common Criteria.
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What’s wrong with SPARK?

It’s Ada: despite technical strength, Ada
remains misunderstood.

It’s not “hot” or “fashionable”.

It’s (relatively) unknown outside Europe. Why?

You’re not using it!
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The CA Development - Results

* 1 year after delivery, 4 defects were found in
100,000 lines of code - 0.04 defects per kloc.

* Productivity was 28 lines of code per day,
taking all project phases into account.

« Total effort: 3571 person days.
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Results - Distribution of Effort

Activity Effort (%)
User Requirements 2
Specification and architecture 25
Design and code 14
Test 34
Fault fixing 6
Project management 10
Training
Design authority
Development- and Target-
environment
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Conclusions

* Three main themes:

« Successful use of COTS through careful
architectural design and separation.

* Practical, large-scale use of formal methods.
Both a technical and commercial success.

« Use of SPARK (mixed with other languages) to
build a highly available, robust system.
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Resources

 The paper: IEEE Software, Jan/Feb 2002.

« SPARK: www.sparkada.com

* MULTOS: www.multos.com

« Us:
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Questions?
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