
Role of Expert Judgement in
Assurance

John Knight
University of Virginia &

Dependable Computing LLC

Patrick McGee
University of Virginia

University of Virginia

Project Goals & Approach
Expert judgement comes up a lot, so:
p  Investigate the roles of expert judgement in

assessment, especially in safety assessment
p  Determine the associated requirements
p  Review the literature, determine useful

techniques
p  Develop comprehensive approach to support

assessment as needed in safety and software
engineering

Ongoing project
Dependable Computing 2

University of Virginia

Disclaimer

As will become
painfully evident, I
am not an expert

on expert
judgement so
please do not
judge me too

harshly

Dependable Computing 3

University of Virginia

Qualitative vs. Quantitative
p  Credible numbers (mostly probabilities) usually

preferred
p  Assurance decisions take the form:

metric < delta
p  Many items of interest cannot be quantified with

significant credibility, e.g.:
n  Software dependability
n  Human error rates

p  So we end up with qualitative assessment
p  Informally, we turn to expert judgement

Dependable Computing 4

University of Virginia

Typical Questions
p  Experts:

n  “How accurate are assessments made by experts?”
n  “What if the expert is wrong?”
n  “How is the term ‘expert’ defined in any particular assessment

situation?”

p  Judgement examples:
n  “Is the system adequately safe?”
n  “Is the argument compelling?”
n  “Are the requirements complete?”
n  “Has hazard analysis been conducted thoroughly?”
n  “Is the software process in use adequate?”
n  “Has software been tested sufficiently?”

Macro vs. micro is an important distinction

Dependable Computing 5

University of Virginia

Software Assurance Argument

Expert judgment is everywhere

6.11: Analysis
Analysis documents mitigation
of [software hazard n]

244

5.10: [Software Hazard n]
[Software hazard n] is mitigated

245

6.10: Analysis
Analysis documents mitigation
of [software hazard 1]

242

5.9: [Software Hazard 1]
[Software hazard 1] is mitigated

243

4.6: Hazard Mitigation
Argue over reasonably
foreseeable hazards

246

3.7: Software Hazards
Reasonably foreseeable software
hazards to which device is subject

241

3.6: Hazards Mitigation
[Device] software adequately
mitigates all reasonably
foreseeable software hazards

59

6.9: Coverage
Inspection documents complete
coverage of [fault class n]

239

6.8: Testing
Testing results document absence
of subset of [fault class n]

238

6.7: Inspection
Inspection based upon style
guide documents absence
of subset [fault class n]

237

6.6: Static Analysis
Static analysis document absence
of subset of [fault class n]

236

5.8: [Fault Class n]
[Fault class n] eliminated

240

6.5: Testing
Testing results document
absence of [fault class j]

234

5.7: [Fault Class j]
[Fault class j] eliminated

235

6.4: Inspection
Inspection based upon style guide
documents absence of [fault class i]

232

5.6: [Fault Class i]
[Fault class i] eliminated

233

6.3: Static Analysis
Static analysis documents
absence of [fault class 1]

230

5.5: [Fault Class 1]
[Fault class 1] eliminated

231

4.5: Fault Detection Technologies
1) programming and other formal
languages in use, 2) static
analyzers for languages in use, 3)
style guides for languages in use,
4) dynamic analysis techniques for
the software's functional domain

4.4: Fault Classes
Enumeration of fault classes

4.3: Dependability Requirements Satisfaction
Argue dependability requirements satisfaction
by systematic software fault elimination

57

5.4: [High-Level Requirement n]
[Device] software satisfies
[high-level requirement n]

55

10.14: Back-to-Back Comparison Test
Back-to-back comparison testing between model
and code illustrates satisfaction of [high-level
requirement 1] (required, if applicable)

49

10.13: Resource-Usage Test
Resource-usage testing illustrates
satisfaction of [high-level requirement 1]

48

10.12: Fault-Injection Test
Fault-injection testing
illustrates satisfaction of
[high-level requirement 1]

47

10.11: Interface Test
Interface testing illustrates
satisfaction of [high-level
requirement 1]

46

10.10: Requirements-Based Test
Requirements-based testing illustrates
satisfaction of [high-level requirement 1]

45

9.7: Context
[Software integration test plan]

44

9.6: Standard Reference
FDA Software Standard Table
13: Methods for software
integration testing

43

9.5: Test-Phase Verification
Test-phase verification
supports satisfaction of
[high-level requirement 1]

50

10.9: Data-Flow Analysis
Data-flow analysis
demonstrates satisfaction
of [high-level requirement 1]

41

10.8: Control-Flow Analysis
Control-flow analysis
demonstrates satisfaction of
[high-level requirement 1]

40

10.7: Formal Verification
Formal proof demonstrates
satisfaction of [high-level
requirement 1]

39

10.6: Prototype Generation
Prototype generation
illustrates satisfaction of
[high-level requirement 1]

38

10.5: Simulation
Simulation of dynamic parts of
the design illustrates satisfaction
of [high-level requirement 1]

37

10.4: Inspection
Formal inspection
documents satisfaction of
[high-level requirement 1]

36

10.3: Walk-Through
Walk-through supports satisfaction
of [high-level requirement 1]

35

9.4: Standard Reference
FDA Software Standard Table
6: Methods fo the verification of
the software architectural design

34

9.3: Design-Phase Verification
Design-phase verification supports
satisfaction of [high-level requirement 1]

42

8.2: Enumerated Approaches
Argue satisfaction by: design-phase
verification and test-phase verification

51

7.2: Composed Requirements
Decomposed requirements completely
satisfy [high-level requirement 1]

52

10.2: Enumerated Approaches
Argue satisfaction by: design-phase
verification and test-phase verification

30

9.2: [Low-Level Requirement n]
[Device] software satisfies
[low-level requirement n]

31

12.13: Back-to-Back Comparison Test
Back-to-back comparison testing between
model and code illustrates satisfaction of
[low-level requirement 1] (required, if applicable)

26

12.12: Resource-Usage Test
Resource-usage testing illustrates
satisfaction of [low-level requirement 1]

25

12.11: Fault-Injection Test
Fault-injection testing
illustrates satisfaction of
[low-level requirement 1]

24

12.10: Interface Test
Interface testing illustrates
satisfaction of [low-level
requirement 1]

23

12.9: Requirements-Based Test
Requirements-based testing illustrates
satisfaction of [low-level requirement 1]

22

11.5: Context
[Software unit test plan]

21

11.4: Standard Reference
FDA Software Standard Table 10:
Methods for software unit testing

20
11.3: Test-Phase Verification
Test-phase verification supports
satisfaction of [low-level requirement 1]

27

12.8: Semantic Code Analysis
Semantic code analysis demonstrates
satisfaction of [low-level requirement 1]

18

12.7: Static Code Analysis
Statis code analysis
demonstrates satisfaction
of [low-level requirement 1]

17

12.6: Data-Flow Analysis
Data-flow analysis
demonstrates satisfaction
of [low-level requirement 1]

16

12.5: Control-Flow Analysis
Control-flow analysis demonstrates
satisfaction of [low-level requirement 1]

15

12.4: Formal Verification
Formal proof demonstrates
satisfaction of [low-level
requirement 1]

14

12.3: Semi-Formal Verification
Semi-formal verification demonstrates
satisfaction of [low-level requirement 1]

13

12.2: Inspection
Formal inspection
documents satisfaction of
[low-level requirement 1]

12

12.1: Walk-Through
Walk-through supports satisfaction
of [low-level requirement 1]

11

11.2: Standard Reference
FDA Software Standard
Table 9: Methods for the
verification of software unit
design and implementation

10

11.1: Design-Phase Verification
Design-phase verification supports
satisfaction of [low-level requirement 1]

19

10.1: Enumerated Approaches
Argue satisfaction by: design-phase
verification and test-phase verification

28

9.1: [Low-Level Requirement 1]
[Device] software satisfies
[low-level requirement 1]

29

8.1: Enumerated Requirements
Argue satisfaction over
enumerated low-level requirements

32

7.1: Decomposed Requirements
[Device] software satisfies decomposed
requirements of [high-level requirement 1]

33

6.2: Requirement Decomposition
Argue satisfaction by decomposed
requirements and requirement composition

53

5.3: [High-Level Requirement 1]
[Device] software satisfies
[high-level requirement 1]

54

4.2: Functional Requirements Satisfaction
Argue requirements satisfaction over
enumerated high-level functional requirements

56

3.5: Requirements
High-level requirements
defined in [reference]

9

3.4: Requirements Satisfaction
[Device] software satisfies its
high-level requirements

58

5.2: [Other Standards]
[Device] software conforms
to [other standards]

6

6.1: FDA Software Assurance Standard
[Device] software conforms to the FDA
Software Assurance Standard

4

5.1: FDA Software Assurance Standard
[Device] software conforms to the FDA
Software Assurance Standard

5

4.1: Standards Conformance
Argue conformance over
enumerated standards

7

3.3: Standards
Requisite standards defined in
[references]

3.2: Standard
FDA Software Assurance Standard

33.1: Standards Conformance
[Device] software conforms to
all requisite standards

8

2.1: Fit for Use
Argue software assurance
by fitness for use

60

1.4: Definition
[Device] software
dependability requirements

1.3: Design
[Device] design documentation

1.2: Definition
Fitness for use is defined to
be: 1) conformance with
requisite standards, 2)
satisfaction of [Device]
requirements to meet
functional, reliability and
availability requirements,
3)hazard mitigation to meet
safety requirements

1
1.1: [Device] Software Assurance
[Device] software is fit for use

61

Expert
Judgment

Expert
Judgment

Expert
Judgment

Dependable Computing 6

University of Virginia

Expert Judgement

p  Very broad topic
p  Great deal of material in the literature
p  Does not seem to be a credible, comprehensive theory

Dependable Computing 7

University of Virginia

Some of the Literature…
p  A Structured Expert Judgment Study for a Model of Campylobacter

Transmission During Broiler-Chicken Processing
p  Expert judgment based multi-criteria decision model to address

uncertainties in risk assessment of nanotechnology-enabled food
product

p  Bene-Eia: A Bayesian Approach to Expert Judgment Elicitation with
Case Studies on Climate Change Impacts on Surface Waters

p  Health risk assessment for nanoparticles: A case for using expert
judgment

p  Expert Judgment Versus Public Opinion – Evidence from the
Eurovision Song Contest

p  Expert Judgment on Inadvertent Human Intrusion into the Waste
Isolation Pilot Plant

Dependable Computing 8

University of Virginia

Copi and Cohen

“An expert’s judgment constitutes no conclusive proof;
experts disagree, and even when they are in agreement

they may be wrong. However, reference to an authority in
an area of competence may carry some weight, but it

doesn’t prove a conclusion. Ultimately, even experts need
to rely upon empirical evidence and rational inference.”

“Appeal to inappropriate authority: A fallacy in which a

conclusion is accepted as true simply because an expert
has said that it is true. This is a fallacy whether or not the
expert's area of expertise is relevant to the conclusion.”

p  Copi and Cohen Introduction to Logic (14th ed.)

Dependable Computing 9

University of Virginia

Mizrahi
p  Distinguishes between appeals to authority and cognitive

authority
p  Claims arguments from expert opinion are weak

arguments:
“However, research on expertise shows that expert opinions are only

slightly more accurate than chance and much less accurate than
decision procedures.”

p  Provides examples from:
n  Medical research and diagnosis, economics

p  Mizrahi, M. (2013). Why Arguments from Expert Opinion are Weak Arguments. Informal Logic,
33(1), 57-79.

Dependable Computing 10

University of Virginia

Wagemans
p  Defines expert as: ‘‘someone who is epistemically

responsible for a particular domain of knowledge’’
p  Separates the proposition of interest from the assertion

made by an expert about the proposition
p  Introduces an argument fragment that documents this

separation:

p  Wagemans, J. (2011). The Assessment of Argumentation from Expert Opinion. Argumentation,
25(3), 329-339.

Dependable Computing 11

of the explicit argument. Argumentation from expert opinion is conceived as
argumentation from authority, which is a subtype of symptomatic argumentation.
An example of symptomatic argumentation is the following:

1 Daniel (X) is concerned about the costs (Y).
1.1 Daniel (X) is an American (Z).
1.10 Being an American (Z) goes characteristically together with being concerned

about the costs (Y).

The associated critical question pertains to the justificatory force of argument 1.1
(that is expressed in argument 1.10): ‘‘Does being an American indeed go
characteristically together with being concerned about the costs?’’9

Having scrutinized the pragma-dialectical account of argument schemes,
Hitchcock and Wagemans (2011) show that there is a principled division of
potentially correct schemes into ‘‘predicate-transfer’’ schemes and ‘‘referent-
transfer’’ schemes. In terms of their proposed revision of the pragma-dialectical
typology, argumentation employing a predicate-transfer scheme is called ‘‘sign
argumentation’’ and argumentation employing a referent-transfer scheme is called
‘‘similarity argumentation’’. They take argumentation from authority to be a subtype
of sign argumentation and suggest the following formulation of the unexpressed
premise: ‘‘being uttered by authority A (=Z) is generally an indication of being true
or acceptable (=Y)’’ (p. 199).10

In the case of argumentation from expert opinion, the scheme and the associated
critical question should be further specified. I propose to do so by substituting
‘‘being asserted by expert E’’ for Z, ‘‘Opinion O’’ for X, and ‘‘being true or
acceptable’’ for Y. This results in the following scheme for argumentation from
expert opinion:

1 Opinion O (X) is true or acceptable (Y).
1.1 Opinion O (X) is asserted by expert E (Z).
1.10 Being asserted by expert E (=Z) is an indication of being true or acceptable

(=Y).

The associated general critical question may then be formulated as follows: ‘‘Is
being asserted by expert E indeed an indication of being true or acceptable?’’

In comparison to Walton’s account of argumentation from expert opinion, the
pragma-dialectical account is more systematic, but less specific. There is only one
critical question, and there is no specification of the arguments the arguer may
provide in anticipation of doubt or criticisms with regard to that question. In the next
section, I will combine the two dialectical accounts into a comprehensive tool for
assessing argumentation from expert opinion.

9 For a summary of the pragma-dialectical account of argument schemes including references to the
relevant pragma-dialectical literature, see Hitchcock and Wagemans (2011, pp. 185–189).
10 This formulation is in accordance with the suggestion by Van Eemeren and Grootendorst (1992,
p. 163) that ‘‘one of the critical questions that needs to be answered is whether [the] authority really
guarantees [the] acceptability [of the proposition involved].’’

The Assessment of Argumentation from Expert Opinion 335

123

University of Virginia

Burgman et al
p  Systematic analysis of expert judgment

motivated by risk assessment in the field of
biological security

p  Generally applicable in assurance context
p  Extremely thorough and detailed literature

survey (> 70 pages)
p  Comprehensive bibliography
p  Evaluation measures:

n  Reliability, accuracy, coherence,

p  Burgman, M., Fidler, F., McBride, M., Walshe, T., & Wintle, B. (2006, January 1).
Eliciting Expert Judgments: Literature Review

Dependable Computing 12

University of Virginia

An Exemplar
p  Software inspections:

n  Initially no systematic inspections in software dev.
n  Fagan inspections introduced, but:

p  Process weaknesses
p  Revealed necessity of experts rather than generalists

n  Active reviews built on Fagan’s work:
p  Tailored to weakly identified experts
p  Introduced simple dialectic model

n  Phased Inspections – brilliant solution to all problems

Dependable Computing 13

Experts judging
the work of

others

Challenge the
work of the

expert

University of Virginia

Important Exemplar
p  FAA Approval:

n  FAA has a system of approval that depends on expert
judgement

n  Systematic, comprehensive
n  Community has extensive experience with the system
n  Seems to work well
n  Maybe we could learn from the FAA
n  (To the best of my knowledge, no other regulating

agency has anything comparable)

Dependable Computing 14

University of Virginia

FAA DER Expert Judgment

p  Experts:
n  Designated Engineering

Representatives (DER)

p  Licensing

p  DER technical areas
p  Company vs. consultant

p  Audit process

p  Approve vs. recommend
p  FARs & conformance

p  Lifecycle judgment

ApproveApprove

Criticality
Scale

Applicant
Experience

Company DER
(Area 1)

Company DER
(Area K)

Federal
Aviation

Regulations

DER
Licensing

Delegate

Applicant

Federal
Aviation

Administration

Development Artifacts

LicenseLicense

Consultant DER
(Area N)

License

Audit - Area 1

Recommend
Delegate Delegate

Statement of
Conformance to FARs

Audit - Area K Audit - Area N

Dependable Computing 15

University of Virginia

A Simple Model

Dependable Computing 16

p  Three parts:
n  Expert selection
n  Judgement elicitation
n  Use of judgement

p  Each part defined as a
set of dimensions

p  Each dimension
elaborated as a set of
possible values

p  Taxonomy of space
p  Details selected for

specific application

Expert Selection

Judgement Elicitation

Use of Judgement

MODEL PARTS

Dimensions – A, B
A – v v v v v v v v v v v v v v v v
B – v

Dimensions – M, N
M – v
N – v v v v v v v v v v v v

Dimensions – X, Y, Z
X – v v v
Z – v v v v v v v v v v v v v v v v v

Y – v v v v v v v v

University of Virginia

Dimensions of Expert Selection
p  Formal training
p  Relevant experience including positions held
p  Previous judgment experience
p  Assessment of previous judgments such as

subsequent approval by a regulating authority
p  Licenses held
p  Publications
p  References
p  Awards and honours

Dependable Computing 17

University of Virginia

Values For Specific Dimensions
p  Formal training:

n  Academic degree(s)
n  Professional course(s)
n  Industrial training course(s)

p  Relevant experience:
n  Years active in subdomain A, in subdomain B, etc.
n  Project management in domain C

Dependable Computing 18

University of Virginia

Judgement Elicitation
p  One expert or many, Delphi iteration?
p  Feedback and training?
p  For quantities:

n  Intervals or language-based description?
n  Probabilities or ratios/fractions?

p  Uncertainty:
n  Expert assessment of bounds
n  Overconfidence – intervals exclude the truth
n  Language based, e.g., highly unlikely

p  Questionnaire or report?
p  No candidate structure in model (see Burgman et al)

Dependable Computing 19

University of Virginia

Process

p  Characteristics
n  FPGA
n  Heterogenious logic
n  Real time
n  Avionics, level A

Dependable Computing 20

Expert Selection

Judgement Elicitation

Use of Judgement

MODEL PARTS

Dimensions – A, B
A – v v v v v v v v v v v v v v v v
B – v

Dimensions – M, N
M – v
N – v v v v v v v v v v v v

Dimensions – X, Y, Z
X – v v v
Z – v v v v v v v v v v v v v v v v v

Y – v v v v v v v v Goal to be
judged

(From
argument)

University of Virginia

Project Plans
p  Develop preliminary elaboration of the model
p  Apply the model to a variety of circumstances:

n  Macro, e.g. safety assessment, software system
assessment

n  Micro, e.g., specific software process elements
p  Merge more literature concepts into model
p  Analyze DER process in depth
p  Modify DER process by merging assurance

argument fragments to inject rigor into audits

Dependable Computing 21

University of Virginia

Summary
p  Expert judgement is a critical component of

assurance
p  Judgements are evidence
p  Surprisingly complex topic, surprisingly

comprehensive literature – far more is known
than one would expect

p  Considerable empirical evidence of many
elements of the problem

p  Critical challenge for assurance/safety cases

Dependable Computing 22

