@ JOHNS HOPKINS

APPLIED PHYSICS LABORATORY

Semi-automated Test Case Generation for
ACAS X Implementation Validation

Daniel Genin, Mark Thober, M. Scott Doerrie
Johns Hopkins University Applied Physics Laboratory

Test case generation

 Test suites are important for development and sometimes mandated
 Test case generation is time consuming and hard

« Software tools for test case generation can dramatically reduce the effort

6 May 2019

2

ACAS X

 Airborne Collision Avoidance System X (ACAS X)

- Next generation replacement for the existing Traffic-Alert and Collision Avoidance System (TCAS)
- Issues audible and visual collision resolution advisories to pilots, e.g., “climb now!”

TimeToTCA [s]

6 May 2019 3

ACAS X Design Process

Developed by MIT LL and JHU APL under auspices of FAA and in
collaboration with representatives of manufacturers and other stakeholders

RTCA published Minimum Operational Performance Standards (MOPS) as
DO-385
- ACAS X Algorithm Design Document (ACAS X ADD)
- Implementation requirements

Manufacturers implement ACAS X ADD and are responsible for certification
- proprietary implementations

One of the tools for verifying implementation compliance is the ACAS X Test
Suite (included in DO-385)

ACAS X Encounter
Encounter 7

Inbuts gold standard” Expected
P (ASIM) Outputs
ACAS X Pass/Fail
Vendor of vendor

implementation implementation

[: = Test Suite

6 May 2019 4

Test Suite

» Test Suite is a collection of end-to-end software tests
- JSON sensor input sequences (aka encounters) and expected output sequences

 Test Suite provides coverage along several dimensions
- Output space coverage
- Functional coverage
- Branch coverage, i.e. every branch of every conditional statement
= DO 178C requirement
= 2128 total branches

{"report_time":0.96,"report_type":"ACAS_XaXo_V15R3","acas_xaxo_v15r3":{"data_type":"OWNSHIP_DISCRETES","ownship_discretes":{"toa":0.
96,"address":1,"mode_a":1200,"opflg":true,"manual_SL":0,"own_ground_display_mode_on":true,"on_surface":false,"aoto_on":true,"is_coarsely_qu
ant":false}}},

{"report_time":0.961,"report_type":"ACAS_XaXo_V15R3","acas_xaxo_v15r3":{"data_type":"HEADING_OBS","heading_obs":{"toa":0.961,"heading
_true_rad":0,"heading_degraded":false}}},

{"report_time":0.962,"report_type":"ACAS_XaXo_V15R3","acas_xaxo_v15r3":{"data_type":"BARO_ALT_OBS","baro_alt_obs":{"toa":0.962,"baro_a
It_ft":5000}}},

6 May 2019

5

Branch coverage

« Executable specification allows mechanization of branch coverage at the ADD level

« Julia’s powerful Lisp-like macro system allows collection of detailed branch coverage
statistics with virtually no changes to ADD code
- ptf macro

« Significant branch coverage obtained by taking encounters used for simulation tests

- 500K encounters

- Greedy branch coverage optimization
- Sitill left several hundred uncovered branches
6 May 2019

6

Computer assisted test case development

« Manual test case generation for branches deep in convoluted code is very

labor intensive

» FastPACE (Provable Assertion Checking Engine)
« Generates function level test vectors for reaching target branches

elseif !s_c.ra_is_maintain_prev && ra_is_maintain

function BadMaintainTransitionCost(dz_min::R, dz_max::R, dz_own_ave::R, C_bad_transition::R,
sense_own::Symbol, ra_is_maintain::Bool, ra_is_strengthening::Bool,

s_c::BadTransitionCState)
R_corrective::R = params().actions.corrective_rate
R_strengthen::R = params().actions.strengthen_rate
cost::R = 0.0

target_branch=false

if s_c.ra_is_maintain_prev lra_is_maintain
if (s_c.sense_own_prev == :Up
(((dz_min == R_corrective) && ax == Inf)) ||
((dz_min == -Inf) && (dz_max == -R_s then)))
cost = C_bad_transition
elseif (s_c.sense_own_prev == :Down) &&
(((dz_min == -Inf) && (dz_max == -R_corrective)) ||

((dz_min == R_strengthen) && (dz_max == Inf)))
cost = C_bad_transition
elseif (s_c.sense_own_prev == :Up) && !ra_is_strengthening &&
((dz_min == R_strengthen) && (dz_max == Inf))
|target_branch = true P

end

if (sense_own == :Up) &&
(((s_c.dz_min_prev == R_corrective) && (s_c.dz_max_prev == Inf))
((s_c.dz_min_prev == R_strengthen) && (s_c.dz_max_prev == Inf))
cost = C_bad_transition
elseif (sense_own == :Down) &&
(((s_c.dz_min_prev == -Inf) && (s_c.dz_max_prev == -R_corrective)) ||
((s_c.dz_min_prev == -Inf) && (s_c.dz_max_prev == —-R_strengthen)))
cost = C_bad_transition

end

if (abs(dz_own_ave) < R_corrective)
cost = cost + C_bad_transition

end

|assert(target_branch = true”

return coft::R

end

cost = C_bad_transition
elseif (s_c.sense_own_prev == :Down) && !ra_is_strengthening &&
((dz_min == -Inf) && (dz_max == -R_strengthen))
cost = C_bad_transition
end

Auxiliary FastPACE branch-tracking code

6 May 2019

7

FastPACE

Allows checking of arbitrary assertions

Solution can be constrained by adding additional assertions

Uses SMT solver to compute function inputs satisfying WP

If assertion is satisfiable returns input parameters to top-level function

If assertion is unsatisfiable returns unsat

May return unknown or timeout

BadMaintainTransitionCost(dz _min, dz_max, dz_own_ave,
C_bad_transition, , ra_is_maintain,

, S_C)

Status: sat

Value: dz_min = 41.6667

Value: dz_max = 9999.0

Value: dz_own _ave = dz_own_ave
Value: C_bad_transition = 0.0

Value: = sense_own

Value: ra_is_maintain = false

Value: = false

Value: = (BadTransitionCState 3.0 4.0 1.0 true)

6 May 2019 8

FastPACE

Based on Dijkstra’s weakest precondition (WP) analysis with a
number of optimizations to improve scalability

- Single static assignment internal representation
- Assignments replaced with asserts (Flanagan & Saxe)
- WP condition simplified for deterministic & non-blocking programs

Performs constants propagation
Handles nested compound datatypes, vector and matrix arithmetic

Loops with variable upper bounds are unrolled to fixed depth,
specified by the user

Inter-procedural analysis handled by in-lining

Function_of Interest(args)
(_ Generated WP Predicates)
branchl = false
branch2 = false |,
if condition # branch\of interest

branchl = true

statements
else

branch2 = true

statements

end
(_Pl_v

assert(branchl == true)
return val
end

6 May 2019 9

FastPACE Architecture

* Preprocessing step (language specific)
- Julia code is converted into S-expression-like form
- ACAS X params calls are replaced with constants
- ldentifies user-defined functions and data types

« Weakest precondition generator
S-expression code is translated to Guarded Command Language (GCL)
Transforms GCL into single static assignment form (Flanagan & Saxe)

Creates SMTlib definitions for data types
Generates the normal termination expression in SMTlib

« Generated normal termination SMTIib expression is passed to Z3

6 May 2019

10

FastPACE for Matlab

Initial implementation of Matlab front-end

Near feature parity with FastPACE Julia (except compound data-types)

Y
<

Supports matrices and vectors

Capable of analyzing simple code

6 May 2019

11

FastPACE on ACAS X

« Over 1300 lines of code analyzed

Most complex test case -- over 500 LOC
ldentified 22 unreachable branches in DO 385 ADD

- Many unreachable branches identified in early development versions

Generated ~20 test cases for DO 385 ADD

- Numerous test cases developed for early development versions

Hundreds of man-hours saved

6 May 2019

12

Future work

» Current version is restricted to functionality used in ACAS X
« Add support for dynamic data types, e.g., dictionaries, or strings

 Add standard built-in functions

 Improve nonlinear arithmetic performance

6 May 2019 | 13

JOHNS HOPKINS

APPLIED PHYSICS LABORATORY

FastPACE

* Front-end is itself written in Julia to take advantage of Julia’s extensive introspection
capabilities
- converts Julia code into S-expression-like like syntax to simplify parsing
- replaces ACAS X parameter lookups with corresponding constants
- extracts data types information

6 May 2019

()

ACAS X Architecture

« ACAS X is divided into two effectively independent components

- Sensor Tracking Module (STM) — receives inputs from onboard sensors, fuses sensor data and provides
accurate estimates of the ownship and intruder locations

= 9727 SLOC

- Threat Resolution Module (TRM) — receives ownship and intruder locations, tracks potential threats and
generates collision resolution advisories when necessary

= 7709 SLOC

« ACAS X algorithms are written in the Julia language
- High level language for scientific computation
- High performance on computation intensive tasks
- Executable specification

6 May 2019 16

