
Semi-automated Test Case Generation for
ACAS X Implementation Validation

Daniel Genin, Mark Thober, M. Scott Doerrie
Johns Hopkins University Applied Physics Laboratory

6 May 2019 2

Test case generation
• Test suites are important for development and sometimes mandated
• Test case generation is time consuming and hard
• Software tools for test case generation can dramatically reduce the effort

6 May 2019 3

ACAS X
• Airborne Collision Avoidance System X (ACAS X)

� Next generation replacement for the existing Traffic-Alert and Collision Avoidance System (TCAS)

� Issues audible and visual collision resolution advisories to pilots, e.g., ”climb now!”

C
li
m

b

C
le

a
r

6 May 2019 4

ACAS X Design Process
• Developed by MIT LL and JHU APL under auspices of FAA and in

collaboration with representatives of manufacturers and other stakeholders
• RTCA published Minimum Operational Performance Standards (MOPS) as

DO-385
� ACAS X Algorithm Design Document (ACAS X ADD)
� Implementation requirements

• Manufacturers implement ACAS X ADD and are responsible for certification
� proprietary implementations

• One of the tools for verifying implementation compliance is the ACAS X Test
Suite (included in DO-385)

6 May 2019 5

Test Suite
• Test Suite is a collection of end-to-end software tests

� JSON sensor input sequences (aka encounters) and expected output sequences

• Test Suite provides coverage along several dimensions
� Output space coverage
� Functional coverage
� Branch coverage, i.e. every branch of every conditional statement

§ DO 178C requirement
§ 2128 total branches

{"report_time":0.96,"report_type":"ACAS_XaXo_V15R3","acas_xaxo_v15r3":{"data_type":"OWNSHIP_DISCRETES","ownship_discretes":{"toa":0.
96,"address":1,"mode_a":1200,"opflg":true,"manual_SL":0,"own_ground_display_mode_on":true,"on_surface":false,"aoto_on":true,"is_coarsely_qu
ant":false}}},

{"report_time":0.961,"report_type":"ACAS_XaXo_V15R3","acas_xaxo_v15r3":{"data_type":"HEADING_OBS","heading_obs":{"toa":0.961,"heading
_true_rad":0,"heading_degraded":false}}},

{"report_time":0.962,"report_type":"ACAS_XaXo_V15R3","acas_xaxo_v15r3":{"data_type":"BARO_ALT_OBS","baro_alt_obs":{"toa":0.962,"baro_a
lt_ft":5000}}},

6 May 2019 6

Branch coverage
• Executable specification allows mechanization of branch coverage at the ADD level

• Julia’s powerful Lisp-like macro system allows collection of detailed branch coverage
statistics with virtually no changes to ADD code
� ptf macro

• Significant branch coverage obtained by taking encounters used for simulation tests
� 500K encounters
� Greedy branch coverage optimization
� Still left several hundred uncovered branches

6 May 2019 7

Computer assisted test case development
• Manual test case generation for branches deep in convoluted code is very

labor intensive
• FastPACE (Provable Assertion Checking Engine)
• Generates function level test vectors for reaching target branches

Auxiliary FastPACE branch-tracking code

6 May 2019 8

FastPACE
• Allows checking of arbitrary assertions

• Solution can be constrained by adding additional assertions

• Uses SMT solver to compute function inputs satisfying WP

• If assertion is satisfiable returns input parameters to top-level function

• If assertion is unsatisfiable returns unsat

• May return unknown or timeout

Status: sat
Value: dz_min = 41.6667
Value: dz_max = 9999.0
Value: dz_own_ave = dz_own_ave
Value: C_bad_transition = 0.0
Value: sense_own = sense_own
Value: ra_is_maintain = false
Value: ra_is_strengthening = false
Value: s_c = (BadTransitionCState 3.0 4.0 1.0 true)

BadMaintainTransitionCost(dz_min, dz_max, dz_own_ave,
C_bad_transition, sense_own, ra_is_maintain,
ra_is_strengthening, s_c)

6 May 2019 9

FastPACE
• Based on Dijkstra’s weakest precondition (WP) analysis with a

number of optimizations to improve scalability

� Single static assignment internal representation

� Assignments replaced with asserts (Flanagan & Saxe)

� WP condition simplified for deterministic & non-blocking programs

• Performs constants propagation

• Handles nested compound datatypes, vector and matrix arithmetic

• Loops with variable upper bounds are unrolled to fixed depth,

specified by the user

• Inter-procedural analysis handled by in-lining

6 May 2019 10

FastPACE Architecture
• Preprocessing step (language specific)

� Julia code is converted into S-expression-like form
� ACAS X params calls are replaced with constants
� Identifies user-defined functions and data types

• Weakest precondition generator
� S-expression code is translated to Guarded Command Language (GCL)
� Transforms GCL into single static assignment form (Flanagan & Saxe)
� Creates SMTlib definitions for data types
� Generates the normal termination expression in SMTlib

• Generated normal termination SMTlib expression is passed to Z3

6 May 2019 11

FastPACE for Matlab
• Initial implementation of Matlab front-end

• Near feature parity with FastPACE Julia (except compound data-types)

• Supports matrices and vectors

• Capable of analyzing simple code

6 May 2019 12

FastPACE on ACAS X
• Over 1300 lines of code analyzed

• Most complex test case -- over 500 LOC

• Identified 22 unreachable branches in DO 385 ADD
� Many unreachable branches identified in early development versions

• Generated ~20 test cases for DO 385 ADD
� Numerous test cases developed for early development versions

• Hundreds of man-hours saved

6 May 2019 13

Future work
• Current version is restricted to functionality used in ACAS X
• Add support for dynamic data types, e.g., dictionaries, or strings
• Add standard built-in functions
• Improve nonlinear arithmetic performance

6 May 2019 15

FastPACE
• Front-end is itself written in Julia to take advantage of Julia’s extensive introspection

capabilities
� converts Julia code into S-expression-like like syntax to simplify parsing
� replaces ACAS X parameter lookups with corresponding constants
� extracts data types information

6 May 2019 16

ACAS X Architecture
• ACAS X is divided into two effectively independent components

� Sensor Tracking Module (STM) – receives inputs from onboard sensors, fuses sensor data and provides
accurate estimates of the ownship and intruder locations

§ 9727 SLOC
� Threat Resolution Module (TRM) – receives ownship and intruder locations, tracks potential threats and

generates collision resolution advisories when necessary
§ 7709 SLOC

• ACAS X algorithms are written in the Julia language
� High level language for scientific computation
� High performance on computation intensive tasks
� Executable specification

