
The Features
of Habit for

Highly Assured
Systems Programming

Mark P. Jones, on behalf of the HASP project

May 2009

7

About that title …

HASP: High Assurance
Systems Programming

Tools and techniques to support the development
of high assurance systems software:

•! Operating system kernels

•! Hypervisors

•! VMMs

•! Device drivers

•! …

Vision

•! A tool-chain for developing robust, reliable, and
secure systems software that spans the full range
of concerns:

–!From high-level analysis and verification

–!To low-level, performance-sensitive

implementation

Example Application:

Native Apps POSIX

POSIX Apps

Linux

Linux Apps

Linux

Linux Apps

Hardware

Microkernel/

Hypervisor

Microkernel/

Hypervisor

a working µ-kernel implementation with

very high assurance of separation between
domains

Habit

•! A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

 (formerly “Systems Haskell”)

Haskell + bits
High assurance + bits

The Book

•!A well-known “self-help”
book by Stephen Covey

•!“Powerful lessons in

Personal Change”

•!First published in 1989

•!Nothing to do with HASP…

Original Talk Plan

•! An introduction to the
Habit language

•! Showcase seven “cool”
features of the design

•! Only connection with the

book: the number 7 and
the word “Habit”

Maybe I should
take a look …

•!Personal Development

•!Time Management

•!Relationships

•!Communication

•!Leadership

•!The Character Ethic

•!The Abundance Mentality

Principles & Values

“A holistic, integrated,
principle-centered approach
for solving personal and
professional problems”

Original Talk Plan

•! An introduction to the
Habit language

•! Showcase seven “cool”
features of the design

•! Only connection with the

book: the number 7 and
the word “Habit”

The New Talk Plan

•! An introduction to the Habit language

•! Emphasis on underlying principles and values

•! An occasional diversion into those “cool”

technical features

•! Use Dr Covey’s names for the seven habits to
structure the talk (sometimes with a very liberal
reinterpretation)

Habit 1

Be Proactive

Principles of Personal Choice

Between Stimulus & Response

Response Stimulus

Between Stimulus & Response

Response Stimulus

•! Response is a function of our decisions, not of
our conditions

•! We have the initiative and the responsibility
to make things happen

Freedom

of Choice

A Challenging Domain

Building high-assurance systems software is
extremely challenging

1.! Low-level operations, fine-grained control,
performance sensitivity, …

2.! Increasing functionality, increasing

complexity, increasing need for assurance, …

Current practice favors languages that are close to
the metal, accommodating (1), neglecting (2)

Raising the Level of Abstraction

Low-level machine

High-level application/algorithm

Abstraction

focus

focus

Can this be accomplished
without compromising on
fine-control over low-level

details?

The House Experience
!! House is a proof-of-

concept OS, written
in Haskell:

!! Kernel + basic
drivers (~5KLOC)

!! Network driver
(~2KLOC)

!! GUI (~6KLOC)

!! Apps

!! User programs

!! A starting point for
the Galois HaLVM

Benefits of Using Haskell

Productivity: higher-level abstractions, genericity,
reuse

Safety: built-in type and memory safety
guarantees

Tractability: purity, referential transparency,

encapsulation of effects, semantic foundations

The Price of Abstraction

•! But for some systems programming applications,
abstraction is a major barrier to adoption

•! Examples:

•! Unknown data representation

•! Unpredictable execution behavior,

performance, resource utilization, etc.

•! Runtime system: size and complexity

•! Haskell has weaknesses in these areas

Habit 2

Begin with the End in Mind

Principles of Personal Vision

Habit

•! A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•! Primary Commitments:

•! Systems Programming

•! High Assurance

•! Simplicity

•! A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•! Systems Programming: Provide programmers

with the ability to choose and make informed
trade-offs between:

•! Control over data representation and

performance

•! Abstraction and use of higher-level language
mechanisms

Habit

•! A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•! High Assurance: a full and formal semantics

that provides a basis for:

•! Mechanized reasoning

•! Meaningful assurance arguments

•! Verification of Habit programs (and,
ultimately, Habit implementations)

Habit

•! A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•! High Assurance Runtime System (HARTS):

•! Services for memory management, garbage
collection, foreign function interface, …

•! Designed to be “as simple as possible”,

modular, formally verified

Habit

HARTS

The Big Picture

Habit
Language

Prototype
Application

Verified
Application

Formal
Semantics

Realizing the Big Picture

•! Each of these areas provides opportunities for
local innovations and advances

•! But our sights are set on the combination

•! Feasibility: Functionality, assurance,

performance, cost

•! Technology Transfer: A toolset and a real
world case study

Habit 3

Put First Things First

Principles of Integrity & Execution

The Time Management Matrix

I II

III IV

Urgent Not urgent

Important

Not important

The Time Management Matrix

•! Crisis
 management

•! Patching

•! Prevention

•! New
 opportunities

•! Interruptions •! Busy work

Urgent Not urgent

Important

Not important

•! Crisis
 management

•! Patching

•! Prevention

•! New
 opportunities

•! Interruptions •! Busy work

Why Build on Haskell?

•! Increasingly broad adoption/use of Haskell

•! Growing interest, strong community

•! Avoid reinventing the wheel:

•! Syntax: familiar notations and concepts

•! Semantics: powerful, expressive type system

•! Leave time to focus on what is new

Semantic Foundations

•! Exploring a formal semantic framework using
denotational techniques that can be expressed in
well-developed domain theory

•! Automated (for example, in Isabelle; see

upcoming publication in TPHOLs conference)

•! Expect to develop a corresponding operational
semantics for treatment of resource sensitivity

Properties for Assurance

•! Properties about the language

•! Examples: type and memory safety

•! Equivalences between program fragments
•! Examples: for use in reasoning, transformation,

optimization, synthesis

•! Properties of implementations

•! Example: preservation of semantics

•! Properties of applications
•! Example: separation properties of a hypervisor

Habit 4

Think Win/Win

Principles of Mutual Benefit

Example: Type Safety

Developer Win:

Earlier detection of bugs during development

User Win:

More secure deployed systems

Example: Type Safety

Developer Win:

Earlier detection of bugs during development

User Win:

More secure deployed systems

Certifier Win:

Many safety properties enforced automatically

via types

Example: Purity

•! The output of a function of type A -> B depends
only on the value of its input

•! No hidden dependence on global variables or
privileged state

•! Explicit data flow; simplified reasoning

•! The features that we omit can sometimes be as

important as the features that we include

Example: Division

•! Division has type: t -> NonZero t -> t

•! Only two ways to construct a NonZero t value:

•! Runtime check (cost can be amortized):

nonZero :: t -> Maybe (NonZero t)

•! Literal divisor checked at compile-time:

instance (Lit n t, 0<n) => Lit n (NonZero t)

•! Simple, safe, low-cost, generic

Example: Arrays

•! The type Ix n contains only in-bound indices for
an array of length n

•! Array lookup can be fast (no bounds check) and
safe: (@) :: Ix n -> Ref (Array n t) -> Ref t

•! Amortized construction of safe indices with

comparisons that are already required

 (<=?) :: Unsigned -> Ix n -> Maybe (Ix n)

Example: Side Effects

•! Presence of potential side-effects (e.g., state,
exceptions, …) is made explicit in types via
monads: A -> M B

•! A single program can use multiple monads

•! Some operations are generic in the monad, and

others that are specific to a particular monad

•! Particular relevance to systems domain where
some sections of code are required to run in
special “modes”

Privileged? Blocking? Allocating?

Preemptable? Exceptions? Transactional?

Paging on? Protection on? Segmentation on?

•! Correct usage traditionally depends on
programmer discipline

•! A monadic type system can document and
enforce correct use of modes at compile-time

When Unsafe is the only Option

•! Some low-level features are inherently unsafe

•! In these cases, we strive:

•! To wrap them in safe interfaces (A key aspect

in the design of House)

•! To ensure that they are easily located and
identified for audit purposes

Habit 5

Seek First to Understand,
Then to be Understood

Principles of Mutual Understanding

Understanding the Domain

•! What are the driving needs of the systems
programming domain?

•! How can we best address those needs in our

design?

Analysis Design

Implementation Applications

Prior work at PSU

and at Galois

Haskell, ML, …

Types, Monads

Hobbit, RML, … House, HaLVM, L4,

BAC, dombuilder, …

Development Model Requirements

•! Representation/Control

•! Code: optimization, implementation

•! Data: layout, initialization, conversion

•! Resource utilization

•! Ease of use

•! Notation, type inference, user-defined control structures

•! Verification
•! Semantic foundations

•! Type and memory safety

Initial Habit Design: Summary

•! Simplified dialect of Haskell

•! Foundations: pure, higher-order, typed

•! Syntax: definitional style, lightweight notation

•! Changes/additions

•! Strict evaluation; bitdata; memory areas; type-level
numbers; unpointed types; monadic sugar

Controlling Representation

bitdata Bool = False [B0] | True [B1]!

bitdata Perms = Perms [r, w, x :: Bool]!

bitdata Fpage!

 = Fpage [base :: Bit 22 | size :: Bit 6!

 | reserved :: Bit 1 | perms :: Perms]!

Bit-level data
specifications

Familiar box
layout notation

Type-level
numbers

… continued
class mempage_t {!
public:!

 union {!

 struct {!

 BITFIELD7(word_t,!

 execute : 1,!

 write : 1,!

 read : 1,!

 reserved : 1,!

 size : 6,!

 base : L4_FPAGE_BASE_BITS,!

 : BITS_WORD - L4_FPAGE_BASE_BITS - 10!

);!

 } x __attribute__((packed));!

 word_t raw;!

 };!

};!

BITFIELD macro adjusts
for variations between

C compilers …

Permission
values inlined

gcc specific attribute: “a

variable or structure field should have
the smallest possible alignment”

From L4Ka::Pistachio, a mature L4

implementation in C++ from the

University of Karlsruhe, Germany

Macro-level
numbers

Fine Control of Memory Layout:

In C:
struct Mapping {!

 struct Space* space;!

 struct Mapping* next;!

 struct Mapping* prev;!

 unsigned level;!

 Fpage vfp;!

 unsigned phys;!

 struct Mapping* left;!

 struct Mapping* right;!

};!

In Habit:!
type Mapping = struct!

 [space :: Stored (Ptr Space)!

 | next, prev :: Stored (Ptr Mapping)!

 | level :: Stored (Bit 32)!

 | vfp :: Stored Fpage!

 | phys :: Stored (Bit 32)!

 | left, right :: Stored (Ptr Mapping)]!

Fine-control of memory
layout, endianness, etc..

Exact layout is not guaranteed
without compiler-specific

annotations

Area Alignment & Allocation:

Allocating an initial page directory:

•! In C/C++ (from L4Ka::Pistachio):

!static word_t init_pdir[1024]!

! __attribute__((aligned(4096))) !

 SECTION(".init.data");!

•! In assembly code (from pork):!

! .align (1<<PAGESIZE)!

!init_pdir: .space 4096!

•! In Habit (based on Hobbit prototype):!

!area init_pdir :: ARef 4K (Array 1024 PDE)!

Portable Assembly Language

•! Habit shares with C the goal of being a portable
assembly language:

•! High-level (e.g., expressions not registers)

•! Intuitive (albeit approximate) mapping to machine;
predictable performance/costs

•! Except that Habit will:

•! Provide a formal semantics from the outset

•! Allow more precise control over data layout

•! Support higher-level programming features

•! Eschew the use of unsafe primitives

Performance Annotations

[noalloc]

sum [1..10]

[noalloc]

let loop t n

 = if n>10 then t

 else loop (t+n) (n+1)

in loop 0 1

[noalloc]

natfold 0 (+) 10

•! How are resource sensitivity
and performance expectations
captured in code?

•! Open research problem

•! Initial approach for Habit:

•! Performance annotations to
guide code generation

•! Compiler feedback to guide
programmer refactoring of
code

Habit 6

Synergize

Principles of Creative Cooperation

Synergy

•! When 1 + 1 is more than 2

•! Synergy via our collaboration with Galois

•! Synergy via technical developments

Unpointed Types

Systems Haskell

Theorem Prover

Interaction

Compilation

Strategies

Unpointed

Types

Termination

via Types

Unpointed Types

•! Every type in Haskell is pointed:

•! Includes a bottom element denoting failure to terminate

•! Enables general recursion, complicates reasoning

•! But many types in systems programming (e.g., bit fields,
references,…) are naturally viewed as unpointed:

•! No bottom element, stronger termination properties,
primitive recursion still possible via “fold” operations

•! Could be modeled by lifting to attach “false bottom”

•! Better to handle directly; more expressive types

Integrating Unpointed Types

•! A strategy for integrating unpointed types in Haskell using
type classes was proposed by Launchbury and Paterson

•! We are scaling this to a full language design

•! Example: !fpsize :: Bit 6 -> Bit 6

 fpsize n | n==1 = 32

 | n<12 = 0

 | otherwise = n

 Finite, pointed domain and range enables implementation
as a lookup table, computed at compile-time

Habit 7

Sharpen the Saw

Principles of Balanced Self-Renewal

The Fable:

•! Sawing down a tree will be easier if you pause
from time to time to sharpen the saw

•! Less time hacking

•! Take some time to improve the tools

Paradigm Shifts

•! According to Thomas Kuhn in “The Structure of
Scientific Revolutions”:

•! Almost every significant break through in the

field of scientific endeavor is first a break with
tradition, with the old ways of thinking

Time for a new Paradigm Shift?

•! The systems programming community went
through a major paradigm shift in the move from
assembly to C, enabling:

•! New levels of functionality

•! New levels of portability

•! Languages like Habit are positioning for a new

paradigm shift that will enable:

•! New levels of assurance and security

Current Status
•! On target to complete baseline design and

implementation this summer:

•! Language design

•! Front-end implementation (parser, type checker, …)

•! Formal semantics

•! Small case studies

•! In progress:
•! Prototype backend via Leroy’s Compcert framework for

semantics preserving compilation

•! Integration with HARTS

•! Demonstration application

One Habit for Highly Effective High Assurance
Systems Programming:

•! Builds on critical successes in the design of
Haskell

•! Reflects requirements and feature set for the
systems programming domain

•! Provides foundations for formal verification

•! Serves as a platform for future research and
technology transfer activities

Conclusions

