
Trust Engineering
via Crypto Protocols

Joshua Guttman
Ian Kretz Andrew Lilley-Brinker John Ramsdell

The MITRE Corporation

Hot Topics in the Science of Security
The University of Kansas

23 Sept. 2020

1 / 43

Trust Engineering

System participants have varying goals
I My goals constrain my interactions
I Choices require information about peers

Crypto protocols propagate trust data
I Authentication, authorization decisions, exclusive access,

attested code in enclave

Trust engineering means
designing systems so that:

Each decision based on
definite assumptions and reliable conclusions

about peers

2 / 43

A simplest example
The yes-or-no protocol

Goal: Ask a yes-or-no question, get answer from peer
I Question and answer cryptographically protected
I Even an adversary who guesses the question doesn’t learn answer

Only use one encryption

3 / 43

Yes-or-no protocol

Choose random values Y ,N, encrypt together with question Q

• Yoo

Query: •

��

.6

(0 • Noo

{|Q,Y ,N|}pk(A)

��
• // Y

Answer: A •
.6

(0 • // N

4 / 43

A simplest example
The yes-or-no protocol

Goal: Ask a yes-or-no question, get answer from peer
I Question and answer cryptographically protected
I Even an adversary who guesses the question doesn’t learn answer

Could have chosen random values Y ,N
in other order

Only use one encryption

Random Y ,N don’t say yes or no

Structure of protocol propagates answer

5 / 43

A simplest example
The yes-or-no protocol

Goal: Ask a yes-or-no question, get answer from peer
I Question and answer cryptographically protected
I Even an adversary who guesses the question doesn’t learn answer

Could have chosen random values Y ,N
in other order

Only use one encryption

Random Y ,N don’t say yes or no

Structure of protocol propagates answer

5 / 43

Analyzing Yes-or-No

If query {|Q,Y ,N|}pk(A) receives answer Y ,
what else must have happened in distributed system?

Assume decryption key pk(A)−1 uncompromised

Conclude answerer A sent Y

Cryptographic Protocol Shapes Analyzer solves:

6 / 43

Analyzing Yes-or-No

If query {|Q,Y ,N|}pk(A) receives answer Y ,
what else must have happened in distributed system?

Assume decryption key pk(A)−1 uncompromised

Conclude answerer A sent Y

Cryptographic Protocol Shapes Analyzer solves:

6 / 43

Analysis of Yes-or-No via CPSA: Hearing Y

−→

pk(A)−1 non-compromised Y fresh

7 / 43

Analysis of Yes-or-No via CPSA: Hearing Y

−→

pk(A)−1 non-compromised Y fresh

7 / 43

Analysis of Yes-or-No via CPSA: Hearing N

−→

pk(A)−1 non-compromised N fresh

8 / 43

Analysis of Yes-or-No via CPSA: Hearing N

−→

pk(A)−1 non-compromised N fresh

8 / 43

Analyzing Yes-or-No

If query {|Q,Y ,N|}pk(A) receives answer Y ,
what else must have happened in distributed system?

Assume decryption key pk(A)−1 uncompromised

Conclude answerer A sent Y

Cryptographic Protocol Shapes Analyzer solves:

If some scenario has occurred, what
minimal, essentially different executions are possible?

9 / 43

Protocol analysis vs. trust

Protocol analysis tells us:
I What must have happened elsewhere authentication
I What cannot have happened elsewhere confidentiality
I What assumptions underlie conclusions

Trust provides reasons for assumptions, e.g.:
I Organizational practices
I Interests of real-world principals
I Safety from authorization policies

Each may amplify the other
I Trust in known CA helps authenticate server
I Protocol conclusions attribute claims to principals

10 / 43

Trust Engineering

System participants have varying goals
I My goals constrain my interactions
I Choices require information about peers

Crypto protocols propagate trust data
I Authentication, authorization decisions, exclusive access,

attested code in enclave

Trust engineering means
designing systems so that:

Each decision based on
definite assumptions and reliable conclusions

about peers

11 / 43

Isn’t protocol design dangerous?

Objection: “Protocol design is not for me. I stick with TLS”

Reply: Sure, use TLS for:
I Secure channels
I In-flight encryption

Still need:
I Digital signature (non-repudiability)
I Decisions what to send
I Design for key distribution and transactions

CPSA offers a secure channel abstraction for this

12 / 43

Yes-or-no protocol over TLS

Choose random values Y ,N, encrypt together with question Q

• Yoo

Query: •

��

.6

(0 • Noo

TLS to A : Q,Y ,N

��
• // Y

Answer: A •
.6

(0 • // N

13 / 43

Isn’t protocol design dangerous?

Objection: “Protocol design is not for me. I stick with TLS”

Reply: Sure, use TLS for:
I Secure channels
I In-flight encryption

Still need:
I Digital signature (non-repudiability)
I Decisions what to send
I Design for key distribution and transactions

CPSA offers a secure channel abstraction for this

14 / 43

More interesting example: A data bus

https://www.researchgate.net/publication/334969096_Anomaly_Detection_of_CAN_Bus_Messages_Using_A_Deep_

Neural_Network_for_Autonomous_Vehicles/figures?lo=1, Creative Commons License,
http://creativecommons.org/licenses/by/4.0/

15 / 43

https://www.researchgate.net/publication/334969096_Anomaly_Detection_of_CAN_Bus_Messages_Using_A_Deep_Neural_Network_for_Autonomous_Vehicles/figures?lo=1
https://www.researchgate.net/publication/334969096_Anomaly_Detection_of_CAN_Bus_Messages_Using_A_Deep_Neural_Network_for_Autonomous_Vehicles/figures?lo=1
http://creativecommons.org/licenses/by/4.0/

Schematically. . .

16 / 43

Security considerations

Most msgs don’t need confidentiality

Entertainment system should never
I send control msgs to brakes
I generate msgs purportedly from brake pedal
I share authentication secret for pedal-to-brake msgs

Hence: distribute pairwise Message Authentication Codes
I Centralize authorization policy
I Distribute shared secrets only to authorized pairs

17 / 43

With keying for Message Authentication Codes

18 / 43

Designing the protocol

Device behaviors:
I Receive MAC keys for a peer device
I Send or receive MACed msgs

Controller behavior:
I Deliver MAC keys to permitted peers

Protocol considerations:
I Long-term protection to deliver MAC keys
I Certs for long-term keys
I Devices store MAC keys in state, retrieve them for use

19 / 43

MAC key distribution: Controller r

•

��

oo [[cert Aˆ pk(A)]]skca(CA) = c1

•

��

oo [[cert B ˆ pk(B)]]skca(CA) = c2

•

��

// {|mkp [[del AˆB ˆ r ˆmk1 ˆmk2 ˆ c1 ˆ c2]]sksig(r)|}pk(A)

• // {|mkp [[del B ˆAˆ r ˆmk2 ˆmk1 ˆ c2 ˆ c1]]sksig(r)|}pk(B)

20 / 43

MAC key distribution: Device A

•

��

{|mkp [[del AˆB ˆ r ˆmk1 ˆmk2 ˆ c1 ˆ c2]]sksig(r)|}pk(A)oo

x

rr•

,,

trans

mkr AˆB ˆ r ˆmk1 ˆmk2 ˆ c1 ˆ c2

21 / 43

Message reception: Device A

•

��

mkr AˆB ˆ r ˆmk1 ˆmk2 ˆ c1 ˆ c2obsvoo

• m ˆB ˆ i ˆ #(mh m ˆB ˆ i ˆmk2)oo

22 / 43

A CPSA result: A reception

dk(A), dk(B), skca(CA), sksig(r) all uncompromised

23 / 43

How could we have done it wrong?

Well, we did it wrong repeatedly

Bad MAC key packaging

Key direction mismatch

Didn’t deliver certs with MAC keys to devices
I What CA certified peer’s long term key?
I Untrustworthy CA could certify compromised long-term key

F Controller uses compromised long-term key
F MAC keys disclosed when distributed

I CPSA results motivated improvement
I Trust distinction: Trust one CA vs. trust all CAs

24 / 43

Making trust reasoning explicit

Authorization policy

Reasons for thinking keys:
I Undisclosed
I Used only as dictated by this protocol

Reasons for thinking principals:
I Can protect keys
I Adhere to protocol

Principals = People or hardware or software

25 / 43

Making authorization policy explicit

Enrich protocol reasoning with rules, eg:

Can also reflect RBAC, XACML etc.

26 / 43

Updated result

(facts (policy-permits ctr you me) ...)

27 / 43

Making non-compromise explicit

Simple approach:
I CA ensures known individual possesses key
I Self-protection ensures individual protects it
I Threat intelligence determines if key stolen

28 / 43

Persistent safety

29 / 43

Threat-aware controller

30 / 43

Reasoning about attestation
Building atop SGX

SGX: security services for enclaves within user processes

confidentiality: code, data encrypted whenever evicted
attestation: other entities can ascertain enclave’s

code
selected data esp. public key

This can be a big deal:

Protect enclave secrets, allowing

Secure channels between components running

Known code, all

Independent of vulnerable lower levels

e.g. operating system unexpected hardware sysadmins

although with limitations. . .

31 / 43

Reasoning about attestation
Building atop SGX

SGX: security services for enclaves within user processes

confidentiality: code, data encrypted whenever evicted
attestation: other entities can ascertain enclave’s

code
selected data esp. public key

This can be a big deal:

Protect enclave secrets, allowing

Secure channels between components running

Known code, all

Independent of vulnerable lower levels

e.g. operating system unexpected hardware sysadmins

although with limitations. . .

31 / 43

Reasoning about attestation
Building atop SGX

SGX: security services for enclaves within user processes

confidentiality: code, data encrypted whenever evicted
attestation: other entities can ascertain enclave’s

code
selected data esp. public key

This can be a big deal:

Protect enclave secrets, allowing

Secure channels between components running

Known code, all

Independent of vulnerable lower levels

e.g. operating system unexpected hardware sysadmins

although with limitations. . .

31 / 43

SGX: How it provides attestation

Enclave Record includes:
I Enclave id
I Hash of controlling code
I Message, in our usage always including public key
I Many supplementary fields

Processor provides local enclave attestation MAC

Quoting Enclave converts local quote to remote quote EPID

Intel: validates remote quotes online Intel Attest. Serv.
I ensures supply-chain origin
I created runtime dependency on Intel

I new alternative: attestation rooted in with non-Intel CA ECDSA

32 / 43

SGX: How it provides attestation

Enclave Record includes:
I Enclave id
I Hash of controlling code
I Message, in our usage always including public key
I Many supplementary fields

Processor provides local enclave attestation MAC

Quoting Enclave converts local quote to remote quote EPID

Intel: validates remote quotes online Intel Attest. Serv.
I ensures supply-chain origin
I created runtime dependency on Intel
I new alternative: attestation rooted in with non-Intel CA ECDSA

32 / 43

SGX core roles, 1

local-quote epid-quote τ

•

��

τ, eroo •

��
•

τ,er ,MAC(#(pmk,τ), er)

55

•
er , [[rq er]]eek //

33 / 43

SGX core roles, 2

attest-client attest-server

er ,m // •

��

{|N,er , [[rq er]]eek |}pk(AS)// •

��

•

��

{|N,er ,m|}pk(AS) //
?

• •Noo

33 / 43

Three types of rules

Hardware rules: processor requirements

− Local quote issued implies corresponding enclave
− Processor can protect core secrets

Trust rules: key generation and certification practices

− Intel Attestation Server private key protected, compliant
− Accepted QE key generated in provisioning protocol

Attestation rules: behavioral requirements on application code

− User enclave makes fresh key pair
◦ registers public key; protects private key
◦ uses private key only in accordance w/ application protocol

34 / 43

SGX desired execution
If attest-client runs with non-compromised AS

attest-client attest-server epid-quote local-quote

•

��
•

��

•oo

•

��

•qq

•

��

// •

��
• •oo

Facts: Enclave(er , pmk) ManuMadeEpid(ek)
Non keys: Non(dk(AS)) Non(pmk) Non(ek)

35 / 43

SGX desired execution
If attest-client runs with non-compromised AS

attest-client attest-server epid-quote local-quote

•

��
•

��
•

Facts:
Non keys: Non(dk(AS))

35 / 43

SGX desired execution
If attest-client runs with non-compromised AS

attest-client attest-server epid-quote local-quote

•

��
•

��

•oo

•

��

•qq

•

��

// •

��
• •oo

Facts: Enclave(er , pmk) ManuMadeEpid(ek)
Non keys: Non(dk(AS)) Non(pmk) Non(ek)

35 / 43

Three types of rules

Hardware rules: processor requirements

− Local quote issued implies corresponding enclave
− Processor can protect core secrets

Trust rules: key generation and certification practices

− Intel Attestation Server private key protected, compliant
− Accepted QE key generated in provisioning protocol

Attestation rules: behavioral requirements on application code

− User enclave makes fresh key pair
◦ registers public key; protects private key
◦ uses private key only in accordance w/ application protocol

36 / 43

Rule governing local quote
Quote guarantees enclave

Rule

∀z : strd, eid , ch, rest : mesg, k : akey, pmk : skey .
LocQt(z , 2) ∧
LocQtER(z , eid :: ch ::k :: rest) ∧
LocQtPr(z , pmk) ∧ Non(pmk)
=⇒

EnclCodeKey(eid , ch, k , pmk)

37 / 43

SGX core roles

local-quote epid-quote τ

•

��

τ, eroo •

��
•

τ,er ,MAC(#(pmk,τ), er)

55

•
er , [[rq er]]eek //

attest-client attest-server

er ,m // •

��

{|N,er , [[rq er]]eek |}pk(AS)// •

��

•

��

{|N,er ,m|}pk(AS) //
?

• •Noo

38 / 43

Rule governing attest server
AS says EPID key is manufacturer-made and non-compromised

Rule

∀z : strd, ek : akey .
AttServ(z , 2) ∧
ASQtKey(z , ek)
=⇒

ManuMadeEpid(ek) ∧ Non(ek)

39 / 43

Attestation rule for application level code

Rule

∀e, ch : mesg, k : akey, pmk : skey .
PeerCode(ch) ∧
EnclCodeKey(e, ch, k, pmk)

=⇒
Non(k−1)

40 / 43

Induces a behavioral requirement

PeerCode(ch) means code that hashes to ch:

Must:
I Freshly generate a keypair k , k−1

I Move k into enclave record
I Use k−1 only in accordance with the protocol

Must not disclose:
I k−1

I Any computed value providing advantage on k−1

Satisfying the behavioral requirement:
Why not compile code directly

from the CPSA spec?

41 / 43

Trust Engineering

System participants have varying goals
I My goals constrain my interactions
I Choices require information about peers

Crypto protocols propagate trust data
I Authentication, authorization decisions, exclusive access,

attested code in enclave

Trust engineering means
designing systems so that:

Each decision based on
definite assumptions and reliable conclusions

about peers

42 / 43

Joshua Guttman
Ian Kretz Andrew Lilley-Brinker John Ramsdell

The MITRE Corporation

{guttman, ikretz, abrinker, ramsdell}@mitre.org

