
– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

VERIF IED HARDWARE/SOFTWARE
CO-ASSURANCE: ENHANCING
SAFETY AND SECURITY FOR
CRIT ICAL SYSTEMS
N O T E : C O R E O F T H I S W O R K P R E V I O U S LY P U B L I S H E D I N I E E E S Y S C O N 2 0 2 0

David S. Hardin

Trusted Systems Group
Collins Aerospace

with additional contributions by

Matthew Weis and Robby
Kansas State University

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

D ISCLAIMER

The views expressed are those of the authors and do not reflect the official
policy or position of the Defense Advanced Research Projects Agency (DARPA)
or the U.S. Government.

2

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

DARPA CASE: S IMPLE UAV USE CASE

• Architecture models in our CASE effort are expressed in the SAE standard
Architectural Analysis and Design Language (AADL)

• The CASE Cyber Requirements tools examine the AADL model for the
system, in this case a UAV, identifying potential cyber vulnerabilities

• The CASE user then identifies architectural transformations to be applied to
the model to address the vulnerabilities

• Let’s say the need for an input validation filter was identified:
• The CASE user adds the filter to the model, and specifies the high-level

filter behavior, e.g. using a regular expression
• The CASE tools then automatically synthesize the filter and produce a

proof of filter correctness all the way down to the binary level
• This filter is hosted on a high-integrity operating system, e.g. seL4

3

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

DARPA CASE: S IMPLE UAV USE CASE
(CONT’D.)

4

Inserted High-
Assurance Filter

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

EXAMPLE: JSON MESSAGE FORMAT

• In our use case, a UAV air-ground communications system employs JSON to
encode certain messages sent between the ground-based control station and the
UAV

• JSON (JavaScript Object Notation) is a popular interchange format for structured
data

• JSON is text-based, and is relatively simple to generate and parse

• JSON data payloads are built from two basic primitives:
• a collection of name-value pairs (grouped within {})
• an ordered list of values (grouped within[])

• For example, a UAV coordinate could be encoded in JSON as:

{"lat":42.008, "long":-91.644, "alt":5000}

5

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

VERIF IED F ILTERING OF JSON MESSAGES

• To aid in thwarting cyber attacks, we need to construct a filter
component that checks whether a given air-ground message is legal
JSON, and rejects any malformed messages

• However, as this added filter component could itself contain
vulnerabilities (thus increasing rather than decreasing the attack
surface), we need to design that filter in the highest assurance
manner possible

• In order to create such a JSON filter, we need to perform both lexical
and syntactic level analysis on any candidate JSON message, to
ensure that it is legal JSON

6

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

LEXICAL ANALYSIS

• We describe the lexical tokens, or lexemes, of JSON by way of
regular expressions

• JSON lexemes include:
• true, false, null, string, float, and integer values
• {, }, [,], :, ,

• A lexical analyzer generator accepts these regex token
specifications, and produces a lexer that takes an input candidate
JSON message, and produces a list of JSON tokens

7

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

FAST REGULAR EXPRESSION PATTERN
MATCHING

• Brzozowski (1964) presents a method for compiling a regular expression to a
Deterministic Finite-state Automaton (DFA), which is subsequently run on
candidate strings

• Thus, regular expression matching becomes quite fast

• We have performed a correctness proof for regular expression compilation to
DFAs, and contributed it to the HOL4 theorem prover source distribution

• In examples/formal-languages/regular

• Thus, we can utilize a verified compiler toolchain to create a verified regular
expression pattern matcher down to the binary level

• The matcher is, in essence, a simple DFA state traverser function

• We then combine the individual regular expressions for our JSON tokens to create
an overall DFA table for the lexer

8

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

SYNTACTIC ANALYSIS

• We utilize a verified parser generator to create a verified parser table for JSON
• In particular, we employ the Vermillion verified LL(1) parser generator

(Lasser et al. 2019)
• We present a set of grammar rules for legal JSON messages to

Vermillion;
• extract the verified parser table from Vermillion;
• then transfer the verified parser table to our target system

• By generating both the lexer table and parser table in formally verified fashion,
we enable verified data to be transferred from host-based provers to the target
system

• The parser function is a bit more complex than the lexer, in that it requires a
rule stack; otherwise, it is also a fairly straightforward table traverser

9

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

HARDWARE/SOFTWARE CO-DESIGN AND CO-
ASSURANCE FOR THE JSON F ILTER

• We wish to create a lexical/syntactic filter for JSON using hardware/
software co-design and co-assurance techniques

• We utilize the verified lexer generation and verified parser generation
capabilities described earlier to create the lexer table and parser table for
JSON (“verified data”)

• The table traversal code is written by hand in the hardware/software co-
design language

• In the future, this code will be automatically generated

• For the parser rule stack, we utilize a previously verified fixed-size stack
component written in the hardware/software co-design language

10

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

JSON F ILTER BUILT FROM HARDWARE/
SOFTWARE CO-ASSURANCE COMPONENTS

11

Input

Prover

Token
Regexps

Lexer Table

OutputParser

Prover

Grammar
Rules

Parser Table

Lexer

Stack

Target System

Build System

= Verified Component

Data Format Specification

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

THE RUSSINOFF-O’LEARY APPROACH TO
HARDWARE/SOFTWARE VERIF ICATION

• The hardware/software verification approach we employ was
developed by David Russinoff and John O’Leary, while both
were at Intel

• The approach was initially based on SystemC, and was
called MASC (ACL2 Workshop 2014)

• Russinoff changed the source language from SystemC
to Algorithmic C after he moved to Arm, made several
enhancements, and renamed the system RAC
(Restricted Algorithmic C)

• RAC is extensively documented in Russinoff’s 2018 book,
Formal Verification of Floating-Point Hardware Design: A
Mathematical Approach, wherein RAC is applied to the
verification of realistic Arm floating-point designs

• RAC, and the verifications described in the book, are all
available as part of the standard ACL2 distribution

12

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

ALGORITHMIC C

• The Algorithmic C datatypes “provide a basis for writing bit-accurate
algorithms to be synthesized into hardware”

• The Algorithmic C datatypes are defined via an open source C++ header file
that users can #include in their designs

• No runtime library required

• Example use:
• typedef ac_int<112,false> ui112;

 declares an unsigned 112-bit type used in floating-point hardware datapaths

• Supported by Mentor hardware synthesis tools, e.g. Catapult

• Further information is available at https://hlslibs.org

13

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

RESTRICTED ALGORITHMIC C (RAC)

• Restricted Algorithmic C defines a C++ subset that promotes proof, hardware
synthesis, and simulation

• Use case: A hardware developer expresses hardware functionality in RAC, which
is then translated into a theorem prover language used by the verification expert

• RAC encompasses many of the restrictions common in “high-assurance” C, such
as no function pointers, disallowing recursion, etc.

• RAC disallows all pointers, as well as function side-effects
• Certain control constructs (e.g., breaking out of a for loop) are also

disallowed

• RAC supports bit slices, C++ arrays, and C++ tuples for multiple-value return

• For more information on RAC, please consult Chapter 15 of Russinoff’s book

14

– © 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

RESTRICTED ALGORITHMIC C TOOLCHAIN

15

RAC Source
Code

ACL2
Theorem
Prover

RAC-to-ACL2
Translator

Algorithmic
C Header Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware
Design Tools

Simulation and
Test

“Verification
Side”

“Design
Side”

Synthesis,
Simulation, Test,

Equivalence
Checking

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

ACL2

• ACL2 is “A Computational Logic for Applicative Common Lisp”, developed by Matt
Kaufmann and J Moore

• Recipients of the 2005 ACM Software Systems Award

• ACL2 developers model their system as Common Lisp functions, then state and
prove theorems about their model using ACL2’s highly automated proof heuristics

• These functions and theorems are gathered into libraries, called books, which
are proved once, then utilized many times

• ACL2 has been used in many large academic and industrial verification efforts:
• Floating-point unit verification (AMD, ARM, Centaur, Intel, Oracle)
• AAMP7 separation kernel microcode and Green Hills INTEGRITY-178B

kernel information flow verification (Collins Aerospace)
• Used to certify the correctness of the “world’s largest math proofs” (Heule)

• Proofs are discovered by massively parallel SAT solving

16

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

BR IDGING THE DESIGN/VERIF ICATION GULF

• A key issue in the formal verification of engineering artifacts is the gulf between the sorts of
programs that can be readily specified and verified, and the sorts of programs that “real-
world” developers actually write:

• The Russinoff-O’Leary toolchain, in combination with the ACL2 theorem prover, does an
admirable job of bridging these two worlds

17

Formal Verification “Comfort Zone” Real World

Functional Programming Imperative Programming

Total, terminating functions Partial, potentially non-terminating functions

Non-tail-recursive functions Loops

Okasaki-style pure functional algebraic data types Structs and Arrays

Infinite-precision Integers Modular Integers

Linear Arithmetic Linear and non-linear arithmetic

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

RAC-TO-ACL2 TRANSLATOR

• Translates loops into tail-recursive functions

• Generates ACL2 “measures” to aid in function termination proofs
• All functions to be admitted into ACL2 must be proved to terminate
• Termination proofs are conducted mostly automatically by ACL2,

with hints provided by the measure annotations (if needed)

• Translates fixed-width integer operations into functions defined in
Russinoff’s “RTL” (Register Transfer Language) ACL2 books

• Ensures that translated operations are “wrapped” with an
appropriate RTL bit-width coercion operator so as to accurately
translate modular integer arithmetic

• RTL is described in detail in Part I of Russinoff’s book

18

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

RAC-TO-ACL2 TRANSLATOR (CONT’D.)

• Converts assignments to Lisp let-bindings

• Converts struct/array reads/writes to ACL2 record gets/sets, for which
get-over-set, set-over-get, etc. theorems are available

• In addition, ACL2’s powerful arithmetic capability allows it to reason
about non-linear arithmetic expressions

• ACL2 also features a very capable induction scheme generator
• ACL2 automatically finds suitable induction schemes for the vast

majority of inductive proof attempts, including hybrid schemes

• …allowing us to reason about real-world designs expressed in RAC

19

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

RESULTS

• We successfully realized a JSON lexer/parser-based filter in RAC for a significant
subset of JSON

• We avoided some complexities, e.g. Unicode, for this proof-of-concept effort

• The code for the JSON filter comprised ~1800 RAC source lines, as well as 600
lines of ACL2 theorems dealing with JSON filter correctness

• We tested our JSON filter on concrete input messages by running the executable
obtained by compiling the RAC code using a C++ compiler; as well as by
executing the translated JSON filter functions in ACL2

• These tests produced identical results

• We measured the performance of our JSON filter using test data from (Lasser et
al. 2019) against benchmark code generated by the (unverified) Menhir parser
generator; the RAC code was some 20% faster than the Menhir-generated version

20

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

EXTRA: HARDWARE/SOFTWARE CO-SYNTHESIS
FROM AADL MODELS (KANSAS STATE UNIVERSITY)

21

Demo: Synthesize Hardware for CASE-generetd filter in C

…mapped to
Linux software process

…mapped to
Linux process with FPGA hardware driver

to access hardware-based filter implementation

…mapped to
Linux software process

AADL Model:

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

EXPERIMENTAL SETUP

• ZedBoard
• Low-cost ($450) Xilinx Zynq 7000 development board
• Zynq 7000 includes a Linux-capable 1 GHz Arm Cortex-A9,

along with a reprogrammable FPGA fabric

• Hardware/Software Co-Design Tool: Xilinx Vivado HLS
• Similar to Algorithmic C; a bit less restrictive than RAC
• We have since created C macros to harmonize Vivado HLS

and RAC bit-accurate types and bit slices

• DARPA CASE tools used to synthesize the demo system
directly from the high-level AADL model

22

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

O R I G I N A L S P L AT C C O D E C O U R T E S Y O F K O N R A D S L I N D

CASE INPUT F ILTER IN C (WITH SLIGHT HLS
ADAPTATIONS)

23

/*---  
 * DFA CASE_Filter is the compiled form of regexp  
 * ([\166-\255][\255][\255][\255] | [\000-Z][\000][\000][\000])  
 * ([L-\255][\255][\255][\255] | [\000-\180][\000][\000][\000])  
 * ([\000-\152][:][\000][\000] | .[\000][\000][\000] |  
 * .[\001-9][\000][\000])  
 *  
 * Number of states in DFA: 22  
 ---/  
 
int ACCEPTING_CASE_Filter[22] = { /* elided */ };  
unsigned long DELTA_CASE_Filter[22][256] = { /* elided */ };

 
#define MAXSIZE 512  
 
int case_filter(unsigned char s[MAXSIZE], int len) {  
 #pragma HLS INTERFACE s_axilite port=return  
 #pragma HLS INTERFACE s_axilite port=s  
 #pragma HLS INTERFACE s_axilite port=len  
 
 int state, i;  
 state = 0;  
 
 #pragma HLS loop_tripcount min=0 max=512  
 for (i = 0; i < len; i++) {  
 state = DELTA_CASE_Filter[state] [s[i]];  
 }  
 return ACCEPTING_CASE_Filter[state];  
}

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

TESTING ON ZEDBOARD

24

…
Consumer_proc_sw_consumer_App starting ...
Producer_proc_sw_producer_App starting ...
PFC_Sys_Impl_Instance_proc_sw_producer: Sending [00, 00, 00, 00, 00, 00, 00, 00, 00, 3A,
00, 00]
Filter_proc_sw_filter_App starting ...
PFC_Sys_Impl_Instance_proc_sw_filter: Payload approved - MissionData([00, 00, 00, 00, 00,
00, 00, 00, 00, 3A, 00, 00])
PFC_Sys_Impl_Instance_proc_sw_consumer: Received MissionData([00, 00, 00, 00, 00, 00, 00,
00, 00, 3A, 00, 00])
PFC_Sys_Impl_Instance_proc_sw_producer: Sending [00, 6F, 6F, 6F, 00, 00, 00, 00, 00, 3A,
00, 00]
PFC_Sys_Impl_Instance_proc_sw_filter: Payload rejected - MissionData([00, 6F, 6F, 6F, 00,
00, 00, 00, 00, 3A, 00, 00])

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

CONCLUSION

• Safety-critical/security-critical cyber-physical system development is a
significant, growing challenge in the age of Internet connectivity

• On the DARPA CASE program, we are developing a method and toolchain for
realizing safety- and security-enhancing architectural transformations by
means of formally verified component implementations

• We have described a means of realizing verified input filtering components
using a hardware/software co-design/co-assurance technique, namely RAC,
and presented a JSON filter implemented using RAC, augmented with
leading-edge verified lexer table/parser table generation

• Kansas State has developed a prototype hardware/software co-design
toolchain, which they have successfully demonstrated using a CASE-derived
filter, the CASE tools, and Xilinx Vivado HLS, on an FPGA development board

25

© 2021 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

FUTURE WORK

• We will continue to work to refine the RAC tools, in collaboration with its
developers at Arm (second edition of Russinoff’s book is in preparation)

• Kansas State is continuing to work on extending their toolchain
• We will work with KSU to harmonize Vivado HLS and RAC source code
• We will collaborate on additional hardware/software co-designs, including

proofs of correctness

• Currently limited to Linux builds; Drivers, etc. for seL4 are a future goal

• We would like to implement a verified version of the RAC-to-ACL2 translator
using the verified lexer/parser technology used to create the JSON filter

• We first need to develop high-assurance invocation of “action code”

26

