Authored by Tao Xie, William Enck
Since computers are machines, it's tempting to think of computer security as purely a technical problem. However, computing systems are created, used, and maintained by humans, and exist to serve the goals of human and institutional stakeholders. Consequently, effectively addressing the security problem requires understanding this human dimension. In this tutorial, we discuss this challenge and survey principal research approaches to it.  
Authored by Jim Blythe, Sean Smith
Workflows capture complex operational processes and include security constraints limiting which users can perform which tasks. An improper security policy may prevent cer- tain tasks being assigned and may force a policy violation. Deciding whether a valid user-task assignment exists for a given policy is known to be extremely complex, especially when considering user unavailability (known as the resiliency problem). Therefore tools are required that allow automatic evaluation of workflow resiliency. Modelling well defined workflows is fairly straightforward, however user availabil- ity can be modelled in multiple ways for the same workflow. Correct choice of model is a complex yet necessary concern as it has a major impact on the calculated resiliency. We de- scribe a number of user availability models and their encod- ing in the model checker PRISM, used to evaluate resiliency. We also show how model choice can affect resiliency computation in terms of its value, memory and CPU time.
Authored by John Mace, Charles Morisset, Aad Van Moorsel
Stealthy attackers often disable or tamper with system monitors to hide their tracks and evade detection. In this poster, we present a data-driven technique to detect such monitor compromise using evidential reasoning. Leveraging the fact that hiding from multiple, redundant monitors is difficult for an attacker, to identify potential monitor compromise, we combine alerts from different sets of monitors by using Dempster-Shafer theory, and compare the results to find outliers. We describe our ongoing work in this area.
Authored by Uttam Thakore, Ahmed Fawaz, William Sanders
Intrusion Detection Systems (IDSs) are crucial security mechanisms widely deployed for critical network protection. However, conventional IDSs become incompetent due to the rapid growth in network size and the sophistication of large scale attacks. To mitigate this problem, Collaborative IDSs (CIDSs) have been proposed in literature. In CIDSs, a number of IDSs exchange their intrusion alerts and other relevant data so as to achieve better intrusion detection performance. Nevertheless, the required information exchange may result in privacy leakage, especially when these IDSs belong to different self-interested organizations. In order to obtain a quantitative understanding of the fundamental tradeoff between the intrusion detection accuracy and the organizations' privacy, a repeated two-layer single-leader multi-follower game is proposed in this work. Based on our game-theoretic analysis, we are able to derive the expected behaviors of both the attacker and the IDSs and obtain the utility-privacy tradeoff curve. In addition, the existence of Nash equilibrium (NE) is proved and an asynchronous dynamic update algorithm is proposed to compute the optimal collaboration strategies of IDSs. Finally, simulation results are shown to validate the analysis.
Authored by Richeng Jin, Xiaofan He, Huaiyu Dai
Authored by Dengfeng Li, Wing Lam, Wei Yang, Zhengkai Wu, Xusheng Xiao, Tao Xie
Authored by Phuong Cao, Alex Withers, Zbigniew Kalbarczyk, Ravishankar Iyer
Authored by Kelly Greeling, Alex Withers, Masooda Bashir
Authored by Jim Blythe, Sean Smith, Ross Koppel, Christopher Novak, Vijay Kothari
Authored by Esther Amullen, Hui Lin, Zbigniew Kalbarczyk, Lee Keel